Programa de Pós-Graduação em Biodiversidade e Evolução

Universidade Federal da Bahia

Movimentos verticais da meiofauna em resposta às oscilações de maré e luz solar: Observações diurnas e noturnas

Jamile Pereira dos Santos

Jamile Pereira dos Santos

Movimentos verticais da meiofauna em resposta às oscilações da

maré e luz solar: Observações diurnas e noturnas

Dissertação apresentada ao Instituto de

Biologia da Universidade Federal da

Bahia para a obtenção do Título de

Mestre em Biodiversidade e Evolução

pelo Programa de Pós-Graduação em

Biodiversidade e Evolução.

Orientador: Prof. Dr. Rômulo Barroso

Salvador 2024

Dados internacionais de catalogação-na-publicação (SIBI/UFBA/Biblioteca Universitária Reitor Macedo Costa)

Santos, Jamile Pereira dos.

Movimentos verticais da meiofauna em resposta às oscilações da maré e luz solar: observações diurnas e noturnas / Jamile Pereira dos Santos. - 2024.

75 f · i1

Orientador: Prof. Dr. Rômulo Barroso.

Dissertação (mestrado) - Universidade Federal da Bahia, Instituto de Biologia, Salvador, 2024.

1. Biodiversidade. 2. Biologia marinha. 3. Meiofauna. 4. Meiofauna - Praia do Forte (Mata de São João, BA). 5. Meiofauna - Distribuição vertical - Praia do Forte (Mata de São João, BA). I. Barroso, Rômulo. II. Universidade Federal da Bahia. Instituto de Biologia. III. Título.

CDD - 578.77 CDU - 574.58

Programa de Pós-Graduação em BIODIVERSIDADE E EVOLUÇÃO



UNIVERSIDADE FEDERAL DA BAHIA – INSTITUTO DE BIOLOGIA Rua Barão de Jeremoabo, s/n. Ondina Salvador – Bahia – CEP. 40.170-000

Título de Dissertação: Movimentos verticais da meiofauna em resposta às oscilações de maré e luz solar: Observações diurnas e noturnas

Mestranda: **Jamile Pereira dos Santos** Orientador: **Rômulo Barroso Baptista**

BANCA EXAMINADORA

Membro: Dr. Rômulo Barroso Baptista Universidade Federal da Bahia

Documento assinado digitalmente

MAIKON DI DOMENICO
Data: 10/12/2024 08:22:58-0300
Verifique em https://validar.iti.gov.br

Membro: Dr. Maikon Di Domenico Universidade Federal do Paraná

Documento assinado digitalmente

EMILIO DE LANNA NETO

Data: 09/12/2024 14:10:37-0300

Verifique em https://validar.iti.gov.br

Membro: Dr. Emilio de Lanna Neto Universidade Federal da Bahia

PARECER DA BANCA

A Comissão Examinadora considera o trabalho de conclusão de curso:

[X] Aprovado

[] Reprovado

Dedicatória

"Dedico essa dissertação ao meu avô Antônio Carlos e a minha tia Eunice Bernadeth (in memoriam) com todo o meu amor e carinho"

Agradecimentos

Agradeço a Deus, Jesus e aos irmãos de luz por ter conseguido chegar até aqui, ter me dado saúde, força e energia para superar todas as dificuldades nesses 2 anos.

A Universidade Federal da Bahia e ao programa de Pós-graduação em Biodiversidade e Evolução e sua coordenação, que me proporcionaram um ambiente de aprendizado muito enriquecedor.

A Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela bolsa.

A realização deste trabalho só foi possível graças à colaboração de muitas pessoas. Manifesto minha gratidão a todas elas e de forma especial:

- Ao meu orientador Rômulo Barroso, por ter aceitado me orientar e por todo o apoio dado.
- Ao professor Wagner Magalhães e à Ana Júlia (IC), por todo o suporte dado na coleta.
- À professora Orane Falcão, por todo o suporte dado e por disponibilizar o laboratório e todos os equipamentos presentes.
- Ao Daniel, por toda ajuda e paciência na parte da granulometria.
- Ao professor Landim Dominguez, por disponibilizar o laboratório e todos os equipamentos para realizar a granulometria.
- Ao professor Paulo Paiva (UFRJ) pela ajuda nas análises estatísticas.
- Ao professor Gabriel Barros (UFBA) pelas conversas sobre o estudo.
- À toda equipe do Laboratório GeoEco, por todo conhecimento passado.
- À toda equipe do Labotatório de Annelida, por todo apoio.
- Aos alunos de Iniciação Científica (IC) pela ajuda na busca de artigos sobre o tema.

E a todos que direta ou indiretamente fizeram parte da minha formação, o meu muito obrigada.

Índice de figuras e tabelas

Introdução Geral

Figura 1. Principais táxons da meiofauna. Modificado de Giere, (2009)11
Capítulo Único
Figura 2. Área de estudo: Praia do Forte, Mata de Sao João - BA, Brasil21
Figura 3. Praia do Forte, Mata de São João – BA. Brasil
Figura 4. A. Esquema representativo das coletas, realizadas nos dias 27/08/2022 e
17/06/2023. B. Esquema do amostrador utilizado para extrair as amostras verticais23
Figura 5. Procedimento no campo e de laboratório. A. Processo de coleta das amostras B.
Amostrador do tipo corer (30x 3,5 cm). C. Réplicas independentes de cada estrato. D. Amostras
fixadas em solução de formaldeído salino. E. Fixação das amostras. F. Triagem e identificação
dos organismos. G. Quantificação dos grupos por amostra
Figura 6. Esquema representativo com fotos do local do estudo no momento de cada
amostragem. A. Segundo experimento, obeservação diurna. B. Segundo experimento,
observação noturna
Figura 7. Representação da análise de Escalonamento Multidimensional Não Métrico
(NMDS) para cada coleta 2022 e 2023. A e D. Representam as diferenças entre as observações
(diurna e noturna); B e E. As diferenças entre os estratos verticais do sedimento (0-10 cm, 10-
20 cm e 20-30cm) e C e F. Refletem as dissimilaridades entre as marés com base nas variáveis
analisadas (1, 2, 3, 4, 5 e 6)
Figura 8. Gastrotricha. Boxplot com os dados de abundância, em cada estrato do
sedimento durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e
202330
Figura 9. Ostracoda. Boxplot com os dados de abundância, em cada estrato do
sedimento durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e
202331
Figura 10. Platyhelminthes. Boxplot com os dados de abundância, em cada estrato do
sedimento durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e
2023

Figura 11. Oligochaeta. Boxplot com os dados de abundância, em cada estrato do

sedimento durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e
2023
Figura 12. Nematoda. Boxplot com os dados de abundância, em cada estrato do
sedimento durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e
202336
Figura 13. Acari. Boxplot com os dados de abundância, em cada estrato do sedimento
durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e
202337
Figura 14. Copepoda. Boxplot com os dados de abundância, em cada estrato do
sedimento durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e
2023
Figura 15. Tardigrada. Boxplot com os dados de abundância, em cada estrato do
sedimento durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e
202340
Figura 16. Polychaeta. Boxplot com os dados de abundância, em cada estrato do
sedimento durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e
202341
Tabela 1. Composição granulométrica dos diferentes estratos estudados27
Tabela 2. Análise de Variância Multivariada de Permutação (PERMANOVA) realizada
com base nas variáveis "Estrato", "Período" e " Maré" das amostras no primeiro
experimento
Tabela 3. Análise de Variância Multivariada de Permutação (PERMANOVA) realizada
com base nas variavéis "Estrato", "Período" e "Maré" das amostras no segundo
experimento30

Índice

Introdução Geral	10
Referências Bibliográficas	13
Capítulo Único. Movimentos verticais da meiofauna em resposta às oscilaç	ções da maré da
luz solar: Observações diurnas e noturnas	16
Resumo /Abstract	17
1.1.Introdução	19
1.2. Material & Métodos	20
1.2.1. Aréa de Estudo	20
1.2.2. Granulometria da Praia	22
1.2.3. Procedimento em Campo	23
1.2.4. Processamento das Amostras	26
1.2.5 Análise de Dados	27
1.3. Resultados.	27
1.3.1 Análise Descritiva	27
1.3.2 Análises Estatísticas	28
1.3.3 Resultados por grupo taxonômico	30
1.4. Discussão	42
1.5. Conclusão.	46
1.6. Referências	47
Apêndices	50
Anexos	54

Introdução Geral

Praias arenosas

As praias arenosas são ambientes valorizados por seu uso recreativo pelo homem, e sustentam parte da economia das cidades à beira-mar, através do turismo. Além disso, abrigam expressiva biodiversidade, servindo de abrigo e habitat para diversas espécies, algumas das quais ameaçadas de extinção, exemplo como aves, crustáceos, peixes entre outros (Amaral & Nalim, 2011). São ecossistemas simples, e influenciados principalmente pela interação das ondas, marés e granulometria dos sedimentos especialmente quando comparados a outros ecossistemas costeiros mais complexos, como manguezais, recifes de coral e estuários (Gheskiere et al., 2005).

Existem diversas classificações para os tipos de praias, entretanto, a terminologia mais utilizada classifica as praias em refletivas e dissipativas. As praias refletivas são caracterizadas por maior declividade, maior tamanho médio de grão e incidência de ondas ascendentes e mergulhantes sobre a face da praia, enquanto as dissipativas são caracterizadas por serem mais planas e possuirem uma granulometria mais fina. É comum que as praias refletivas apresentem uma alta abundância de organismos da meiofauna nas camadas mais profundas do sedimento (Mclachlan, 1980).

Região entremarés

A região entremarés, intermareal ou intertidal é uma área de transição onde o mar e a costa se encontram, sendo compreendida por três zonas: supralitoral, que é a região mais superior, onde ocorrem respingos de água; mesolitoral, situado abaixo do supralitoral, onde os organismos estão sujeitos a períodos alternados de total emersão ou imersão e infralitoral, que se estende do limite inferior do mesolitoral até o desaparecimento das macroalgas (Coutinho, 1995).

Existe nesta região uma grande variabilidade nos fatores ambientais, incluindo por exemplo energia de ondas, correntes, erosão, declive, luz, exposição ao ar, temperatura, salinidade e estabilidade do sedimento, que afetam diretamente a biodiversidade e a sua distribuição espacial (Levings & Thom, 1994; Berghahn, 2000).

Meiofauna

A meiofauna é um grupo de animais aquáticos com tamanho reduzido, organização simples, em muitas formas, de modo geral, predadores, de bactérias ou

herbívoros/detritívoros (Swedmark, 1964). Ocorre em todos os ambientes aquáticos, tanto de água doce como salgada em todas as zonas climáticas, das polares às equatoriais (Somerfield et al., 2005). Estes animais apresentam adaptações adquiridas a partir das suas interações com o ambiente, sendo a velocidade do ciclo biológico responsável por uma grande quantidade de gerações por ano (Coull, 1988; Souza-Santos, 1996).

Os organismos da meiofauna representam uma classe de tamanho de animais que, passam por uma peneira de malha de 1 mm, mas são retidos em uma malha de 45 µm. Tipicamente, estes são animais com comprimento corporal entre 100 e 200 µm e habitam os espaços que estão presentes entre as partículas de sedimentos em ambientes aquáticos (Pfeil, 2020). Esse grupo de animais é considerado um importante componente dos ecossistemas bentônicos devido às características peculiares, como: tamanho reduzido, elevada abundância, ciclo de vida curto, sensíveis a mudanças no ambiente, riqueza de espécies, distribuição ubíqua (que está em toda e qualquer parte) e desenvolvimento bentônico direto. A meiofauna pode ser utilizada em estudos ambientais devido a sua alta sensibilidade a alterações ambientais, sendo um indicador biológico de perturbação ambiental de origem antrópica, além de possibilitar a detecção de impactos mais rapidamente do que organismos

da macrofauna (Heip et al., 1985; Coull, 1999)

A maioria dos animais estão representados na meiofauna, principalmente Nematoda. os táxons Copepoda, Oligochaeta, Turbellaria, Gastrotricha, Kinorhyncha, Gnatostomulida e Tardigrada (Rafaelli & Hawkins, 1996) (Fig. 1). Esses representantes podem constituir o que se denomina de "meiofauna temporária", composta pelos estágios larvais ou juvenis da macrofauna, ou "meiofauna permanente", composta pelos animais que vivem todo seu ciclo biológico no sedimento.

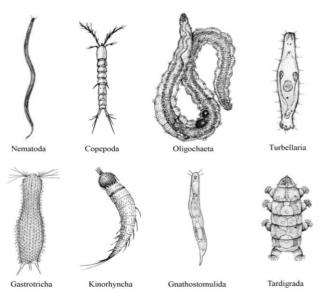


Figura 1. Principais táxons da meiofauna. Modificado de Giere, (2009).

A migração da meiofauna

A migração da meiofauna em ambientes praiais apresenta variações em pequena escala, de até um metro verticalmente e vários metros horizontalmente (Coull, 1999; Giere,

2009). A distribuição vertical do meiobentos acompanha as variações diárias ou sazonais das marés, determinando o deslocamento dos animais, por exemplo, em função da dessecação das camadas superficiais do sedimento durante a maré baixa (Coull, 1999). Segundo Coull (1999), mudanças nos padrões de distribuição vertical também podem ser resultado da influência de parâmetros físicos e hidrológicos, como é o caso dos eventos de chuva.

As distribuições horizontais e verticais dos organismos em uma praia arenosa são controladas principalmente pelos extremos físicos e químicos dos espaços intersticiais (Mclachlan & Brown, 2006; Schlacher et al., 2008), que podem ser atribuídos à classificação, tamanho e forma dos grãos, produção primária e energia hidrodinâmica local (Mclachlan & Brown, 2006; Gray & Elliot, 2009).

Existem pelo menos três diferentes escalas temporais, na migração vertical da meiofauna, que podem estar relacionadas aos ciclos de marés, aos ciclos diários (circadianos) e ciclos sazonais, relacionados às estações do ano (Brown & McLachlan, 1990). As migrações de maré estão diretamente relacionadas às mudanças de umidade no sedimento, no entanto, as migrações diárias são mais frequentes e estão relacionadas, principalmente, às mudanças de temperatura ao longo do dia e a fototaxia negativa. Migrações sazonais são mais frequentes em regiões temperadas, onde as estações do ano são mais definidas (Silva et al., 1991).

Entretanto, embora haja um embasamento teórico para o fenômeno da migração vertical da meiofauna, estudos empíricos na vertical diurna e noturna são escassos nesse contexto, o presente estudo tem como objetivo contribuir com a compreensão desde tema, ao estudar esse fenômeno pontualmente durante a maré vazante, durante os períodos diurno e noturno.

REFERÊNCIAS BIBLIOGRÁFICAS:

- Amaral, A. C. Z. & Nalin, S. A. H. (2011). **Biodiversidade e ecossistemas bentônicos** marinhos do Litoral Norte de São Paulo, Sudeste do Brasil. Campinas: UNICAMP/IB, 574p.
- Berghahn, R. (2000). **Response to extreme conditions in coastal areas: biological tags in flatfish otoliths.** Marine Ecology Progress Series, 192: 277–285.
- Brown, A. C. & Mclachlan, A. (1990). **Ecology of Sandy Shores**. Amsterdam: Elsevier, p. 328.
- Coull, B.C. (1988). **Ecology of marine meiofauna**. In: Higgins, R.P. & Thiel, H. (Eds) Introduction to the study of meiofauna. Smithsonian Institute Press, Washington, pp. 18–38.
- Coull, B. (1999). **Role of meiofauna in estuarine soft-bottom habitats**. Austral. J. Ecology., v. 24, p. 327–343.
- Coutinho, R. (1995). **Avaliação Critica das Causas da Zonação dos Organismos Bentônicos em Costões Rochosos.** Ecologia Brasilienses, Volume I: Estrutura, Funcionamento e Manejo de Ecossistemas Brasileiros, p. 259-271.
- Geskiere, T. et al. (2005). **Meiofauna as descriptor of tourism-induced changes at sandy beaches.** Mar. Environ. Res., v. 60, p. 245- 265.
- Giere, O. (2009). **Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments.** Second Edition. Hamburg: Springer-Verlag.
- Gray, J. S.; Elliott, M. (2009). **Ecology of marine sediments: from science to management.** 2. ed. New York: Oxford University Press. 225 p.
- Heip, C.; Vincx, M.; Vranken, G. (1985). **The ecology of marine nematodes. Oceanography and Marine Biology: an anual Review**, London, v. 23. 399-489 p.
- Levings, C. D., Thom, R. M. (1994). Habitat changes in Georgia Basin: implications for resource management and restoration. In: Wilson, R.C.H., Beamish, R.J., Aikens, F., Bell, J. (Eds.), **Review of the Marine Environment and Biota of Strait of Georgia, Puget Sound and Juan de Fuca Strait.** Proceedings of the BC/Washington Symposium of the Marine Environment, January 13 and 14,1994. Canadian Technical Report of Fisheries and Aquatic Sciences 1948, pp. 330–351.
- Mclachlan, A. (1980). The definition of sandy beaches in relation to exposure: a simple rating system. South African Journal of Science, 76: 137-138.
- Mclachlan A. & Brown A. C. (2006). **The ecology of sandy shores.** 2^a ed., New York: Acad. Press, 373 p.
- Pfeil, V. (2020). **Guide to the Identification of Marine Meiofauna.** In:______. Edited by Andreas Schmidt-Rhaesa. Cap. 1, p. 9-16.
- Rafaelli, D. & Hawkins, S. (1996). **Intertidal ecology**. London, Chapman & Hall. 356 pp.
- Schlacher, T. A. et al. (2008). Sandy beach ecosystems: key features, sampling issues, management challenges and climate change impacts. Mar. Ecol., v. 29, n. 1, p. 70-90.
- Silva, V. M. A. P. Da; P.A. Grohmann & C.S.R. Nogueira (1991). Studies of Meiofauna at Rio de Janeiro Coast, Brazil. Coastal Zone'91,3:2011-2022.
- Somerfield, P.J.; Warwick, R.M.; Moens, T. (2005). **Meiofauna Techniques.** *In*: **Eleftheriou, A. e A. McIntyre. Methods for the study of Marine Benthos.** Third edition. Blackwell Publishing. 418p.
- Souza-Santos, L.P. de (1996) Contribution a L'Etude de la Biologie Nutriotinnelle des Copepodes Meiobenthiques: Cicles d'ingestiom, Rôle des Bactéries ET des Diatomées dans Le regime alimentaire. Budget Energetique. Thése de Docteur.

Université Bordeaux, 159 pp. Swedmark, B. (1964) **The intersticial fauna of marine sand.** Biological Review, 39, 1–42.

Objetivos

Objetivo Geral:

Avaliar o padrão do comportamento migratório dos diferentes grupos da meiofauna da região entremarés, no sentido vertical do sedimento, durante a maré vazante e verificar se há diferenças de padrão de movimento entre os períodos diurno e noturno, na Praia do Forte, Mata de São João-Ba.

Objetivos Específicos:

- Analisar o movimento vertical de cada grupo da meiofauna durante a maré vazante;
- Verificar se há diferença nesses padrões entre os diferentes grupos taxonômicos;
- Verificar se há diferença nos padrões de movimento entre os períodos diurno e noturno para cada grupo taxonômico;
- Avaliar se o movimento dos organismos é influenciado exclusivamente pelo movimento da maré ou se existem diferenças nesses movimentos entre os períodos diurno e noturno.

Capítulo único

Título: Movimentos verticais da meiofauna em resposta às oscilações da maré e luz solar: Observações diurnas e noturnas

Autores: Jamile Pereira dos Santos & Rômulo Barroso

Artigo a ser submetido para o Periódico Marine Biology (ISSN: 1745-1000)

RESUMO

A meiofauna é composta por pequenos organismos que habitam os sedimentos marinhos, geralmente em grande abundância. A migração vertical desses organismos responde a diversos estímulos ambientais, como os ciclos de maré e a permeabilidade do sedimento. Este estudo teve como objetivos: (1) analisar o movimento vertical de diferentes grupos da meiofauna durante a maré vazante; (2) verificar variações nos padrões de movimento entre os grupos taxonômicos; (3) avaliar diferenças nos padrões de movimento entre os períodos diurno e noturno para cada grupo; e (4) investigar se o movimento dos organismos foi influenciado exclusivamente pelas marés ou se existiram variações relacionadas ao ciclo diurno/noturno. As coletas foram realizadas com um amostrador tipo corer (30 x 3,5 cm) na região entremarés da Praia do Forte, em intervalos de uma hora, ao longo de seis horas durante a descida da maré, em um dia que abrangeu tanto o período diurno quanto o noturno, replicado no ano seguinte. Foram coletadas amostras de três estratos verticais (0-10 cm, 10-20 cm e 20-30 cm), totalizando 54 amostras. No laboratório, os organismos foram extraídos, contados e identificados em grandes grupos. No total, foram analisadas 216 amostras, com 279.936 organismos distribuídos em nove táxons: Tardigrada, Nematoda, Gastrotricha, Acari, Copepoda, Ostracoda, Oligochaeta, Polychaeta e Platyhelminthes. Os resultados mostraram diferenças significativas entre os estratos, indicando que a composição da fauna muda principalmente nas diferentes camadas de sedimentos. Grupos como Gastrotricha, Ostracoda, Platyhelminthes e Polychaeta apresentaram diferenças entre os períodos diurno e noturno, enquanto Oligochaeta, Nematoda, Acari, Copepoda e Tardigrada não demonstraram diferenças entre esses períodos. Este estudo oferece informações valiosas sobre a interação da meiofauna com o ambiente, mostrando tanto seus movimentos verticais durante o refluxo das marés quanto como os ciclos circadianos podem influenciar esses padrões.

Palavras-chave: migração vertical; entremarés; praia arenosa

ABSTRACT

Meiofauna consists of small organisms that inhabit marine sediments, often in large numbers. The vertical migration of these organisms responds to various environmental stimuli, such as tidal cycles and sediment permeability. This study aimed to: (1) analyze the vertical movement of different meiofauna groups during the ebb tide; (2) examine variations in movement patterns among taxonomic groups; (3) assess differences in movement patterns between daytime and nighttime for each group; and (4) investigate whether the organisms' movement was exclusively influenced by tides or if there were variations related to the diurnal/nocturnal cycle. Samples were collected using a corer sampler in the intertidal zone of Praia do Forte, at one-hour intervals over six hours during the ebb tide, on a day that encompassed both daytime and nighttime, replicated the following year. Samples were taken from three vertical strata (0-10 cm, 10-20 cm, and 20-30 cm), totaling 54 samples. In the laboratory, the organisms were extracted, counted, and identified into major groups. A total of 216 samples were analyzed, resulting in 279,936 organisms distributed across nine taxa: Tardigrada, Nematoda, Gastrotricha, Acari, Copepoda, Ostracoda, Oligochaeta, Polychaeta, and Platyhelminthes. The results showed significant differences among strata, with key explanatory factors for meiofauna distribution. Groups such as Gastrotricha, Ostracoda, Platyhelminthes, and Polychaeta exhibited variations between daytime and nighttime, while Oligochaeta, Nematoda, Acari, Copepoda, and Tardigrada showed no significant differences between these periods. This study offers valuable insights into the interaction between meiofauna and their environment, showing both their vertical movements during tidal ebb and how circadian cycles can influence these patterns.

Keywords: vertical migration; intertidal; sandy beach

1.1. INTRODUÇÃO

A migração vertical da meiofauna é um fenômeno conhecido embora pouco estudado empiricamente. Essa migração ocorre ao longo da coluna de sedimento e está diretamente relacionada a fatores de mudança de gradientes, como os ciclos de marés e a permeabilidade do sedimento, onde os organismos tendem a se enterrar durante as marés baixas para evitar a dessecação durante a ausência de água, retornando às regiões superficiais do sedimento durante a subida das marés (Mclachlan et al., 1977; Joint et al., 1982). As variações na distribuição vertical da meiofauna podem se dar em diferentes escalas temporais, que podem ser separadas em pequenas escalas (relação com ciclos de marés e variação na umidade do sedimento), intermediárias (relacionado às mudanças de temperaturas diárias) e grandes (ligadas às estações do ano) (McLachlan & Brown, 2006). Os padrões de movimentos verticais da meiofauna também podem estar correlacionados, secundariamente, a distúrbios causados pela chuva e pelo tamanho e intensidade das ondas (Brown & McLachlan, 1990).

Nesse contexto, embora a migração vertical esteja prevista na literatura, apenas alguns estudos foram realizados experimentalmente o de Mclachlan et. al., (1977) posicionada no Kings Beach (Praia dos Reis); Walters & Bell, (1986), próximo à foz do Tampa Bay, Flórida, EUA; Bezerra et. al., (1996) no Istmo de Olinda, ao norte do Porto de Recife; Silva, (2006) na Praia do município de Ipojuca, litoral sul de Pernambuco; Brustolin et al., (2013) na Ilha dos Papagaios; Filho, (2015) na Praia de De Panne, estabelecido na costa oeste da Bélgica; Martins et al., (2015) situado na Praia do Estaleiro e Estaleirinho Praia, no litoral centro-norte do estado de Santa Catarina; Ferreira, (2019) na Praia do Leblon, Rio de Janeiro e Baia & Venekey, (2019) na Praia da Caixa d'Água, Pará.

O termo meiobentos foi primeiramente empregado por Mare (1942), ao analisar os organismos bentônicos do substrato de lama de Plymouth, Inglaterra (Swedmark, 1964). A meiofauna refere-se a animais microscópicos que vivem na camada de sedimentos dos oceanos e da água doce (conhecidos por sua diversidade, na qual Nematoda, Tardigrada, Platyhelminthes, Annelida, Mollusca e Crustacea constituem seus representantes mais dominantes). A meiofauna é amplamente distribuída na praia e forma uma comunidade particular no sedimento. A meiofauna é formada por espécies que são pequenas em tamanho e geralmente grandes em quantidade, e tem um ciclo de vida curto, reprodução assíncrona e nenhuma fase planctônica. Essas características as tornam um indicador importante para

monitorar ecossistemas marinhos e avaliar a saúde do ecossistema (Du et al., 2018).

Os organismos meiofaunais são classificados por seus tamanhos, uma vez que passam por uma peneira de malha de 1 mm, mas são retidos em uma malha de 45 µm. Tipicamente, estes são animais com comprimento corporal entre 100 e 200 µm e habitam os espaços que estão presentes entre as partículas de sedimentos em ambientes aquáticos (Pfeil, 2020).

As comunidades meiobentônicas praiais habitam, preferencialmente, a faixa dos cinco centímetros superficiais do sedimento e a maior diversidade aparece na zona entremarés (Renaud-Mornant et al., 1984), com predomínio dos grupos nematoda e copepoda harpacticóides, além de muitos outros grupos Higgins & Thiel, (1988), McLachlan & Brown, (2006), Renaud-Mornant et al., (1984) e Silva, (1997).

Em regiões entremarés espera-se que as variações causadas pela maré contribuam para o dinamismo químico e físico do ambiente. Sendo assim, vários fatores influenciam na distribuição da meiofauna, (como temperatura, ação das ondas, correntes, aporte de matéria orgânica, percolação de água intersticial, salinidade, intensidade da luz, compactação do sedimento) e entre eles a granulometria evidencia-se como um dos mais importantes, determinando diretamente o tipo, a quantidade, a composição e a distribuição dos organismos que a compõem e indiretamente a qualidade de alimento disponível (Ward, 1975).

Neste contexto, com o objetivo de compreender melhor a influência do movimento das marés, da luminosidade e da temperatura sobre os deslocamentos dos organismos, este estudo avaliou o movimento de diferentes grupos da meiofauna durante a maré vazante, nos períodos diurno e noturno, ao longo de dois anos consecutivos, na Praia do Forte, município de Mata de São João-BA. Partiu-se da hipótese de que a migração dos táxons seriam maiores no período diurno do que no noturno e de que, pelo menos, alguns grupos deslocariam para camadas mais profundas do sedimento.

1.2. MATERIAL & MÉTODOS

1.2.1. Área de Estudo

O presente estudo foi realizado na região entremarés da Praia do Forte (12°34'43.407"S, 38°0'15.410"W), uma praia considerada refletiva, por apresentar uma grande declividade e uma maior incidência de ondas sobre a face da praia. Localizada a 65

km da cidade de Salvador - Ba. A Praia do Forte corresponde a um trecho da faixa litorânea do município de Mata de São João e representa um importante destino turístico, especialmente por suas características ecológicas, paisagísticas e culturais. Com uma área de 605,168 km² (IBGE, 2022) e uma população total de 42.566 habitantes (IBGE, 2022), Mata de São João faz parte da Região Metropolitana de Salvador (RMS) (Silva et. al.,2019) (Figura 2).

O clima da região costeira do Litoral Norte do Estado da Bahia, de acordo com a classificação de Köppen apud SEI (1998), é tropical chuvoso de floresta do tipo Af (clima equatorial), sem estação seca e pluviosidade média mensal acima de 60 mm e anual de 1500 mm, também descreve para a região verões longos e quentes com temperaturas dos meses mais frios superiores a 18° e mais quente maiores de 22°C, respectivamente. O regime de chuvas é caracterizado como típico das regiões de clima mediterrâneo, no qual o mínimo pluviométrico se dá na primavera e verão com períodos secos de um a dois meses e o máximo no outono ou inverno, principalmente no trimestre correspondente aos meses de abril a junho (Nimer, 1989).

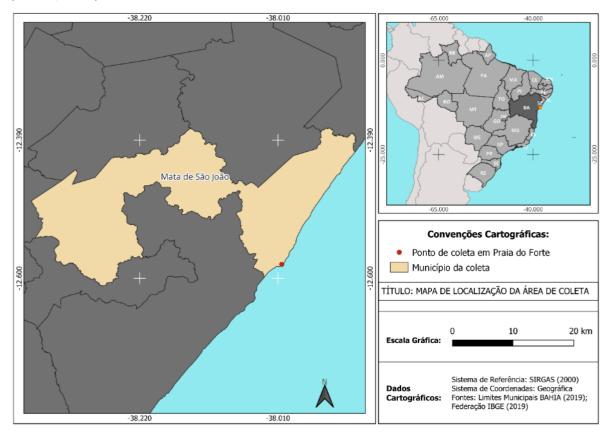


Figura 2. Área de estudo: Praia do Forte, Mata de São João -BA, Brasil.

A Praia do Forte (Figura 3) localiza-se no contexto de uma Zona de Proteção Rigorosa da Área de Proteção Ambiental do Litoral Norte do Estado da Bahia em que,

associado ao ecossistema praial, ocorrem áreas de preservação de mata atlântica, além do parque histórico do Castelo do Forte Garcia D'Ávila, Projeto Tamar, Projeto Baleia Jubarte, Reserva Ecológica Sapiranga e outros projetos de conservação do patrimônio natural, histórico e cultural, considerados como um modelo de desenvolvimento turístico sustentável (Silva et al.,2016).

Figura 3. Praia do Forte, Mata de São João – BA, Brasil.

1.2.2. Granulometria da praia

A fim de caracterizar o ambiente sedimentar, os dados das frações granulométricas foram plotados no software SYSGRAN versão 4.0 (Camargo, 2006), obtendo-se os parâmetros estatísticos segundo as equações de Folk & Ward (1957). Foram recolhidas 9 amostras de sedimento para realizar a granulometria da praia, sendo 3 réplicas para cada estrato ($0-10 \, \text{cm}$), ($10-20 \, \text{cm}$) e ($20-30 \, \text{cm}$). Utilizando-se 100g da granulometria, o material passou por peneiramento a seco em um conjunto de peneiras com aberturas de malha variando de > (-2,00) a <4 Φ (phi= $-\log 2$ diâmetro do grão em mm).

Os resultados obtidos para as análises das frações granulométricas do local de estudo, na Praia do Forte variaram desde areia à silte, conforme pode ser visto na tabela 1. De modo geral, a fração de areia foi a de maior predominância, sendo encontrada mais de 99% em todos os estratos.

Tabela 1. Composição granulométrica dos diferentes estratos estudados.				
Tipos de Sedimentos	0 - 10 cm	10 - 20 cm	20 - 30 cm	
Cascalho	0%	0,13%	0,01%	
Areia	100%	99,87%	99,45%	
Silte	0%	0%	0,53%	

1.2.3. Procedimentos em Campo

As amostras foram coletadas em um ponto escolhido na região entremarés da Praia do Forte (12°34'43.407"S, 38°0'15.410"W) no mesmo período, em dois anos seguidos, 2022 e 2023. As amostras foram coletadas próxima ao nível superior do mesolitoral, em intervalos de 1 hora, no mesmo nível da maré, durante seis horas, ao longo do período da maré vazante, sendo uma no período diurno e outra no período noturno, ambas no mesmo dia (Figura 4).

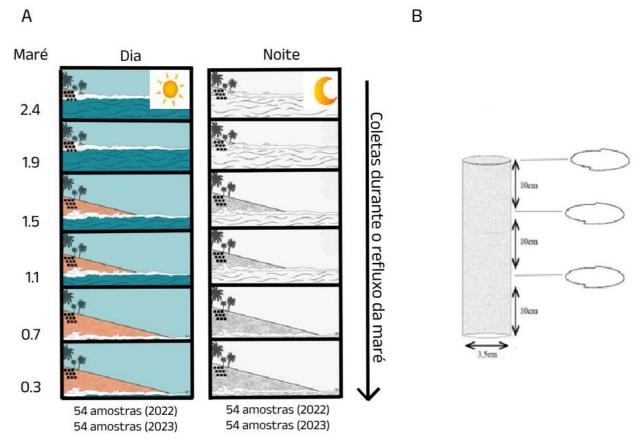


Figura 4. A. Esquema representativo das coletas, realizadas nos dias 27/08/2022 e 17/06/2023. B. Esquema do amostrador utilizado para extrair as amostras verticais.

As coletas ocorreram nos dias 27 de agosto de 2022 e 17 de junho de 2023, datas

escolhidas por apresentarem marés de grandes amplitudes (Figura 5A). Em cada um desses dois dias, foram realizadas coletas no período diurno e noturno durante o refluxo da maré (Figura 6), sendo que a primeira coleta foi realizada das 5am às 10am e das 17:30pm às 22:30pm e a temperatura ao longo do dia da coleta variou entre 25°C a 26°C, durante à noite ficou estabelecida nos 25°C (Weather Spark, 2022). No ano seguinte, a coleta ocorreu das 4:15am às 9:15am e das 16:15pm às 21:15pm, sendo que na coleta diurna apresentou uma temperatura variando de 26°C e 25°C e na noturna se estabilizou nos 25°C durante toda a coleta (Weather Spark, 2023). Conforme a figura 4, foi padronizado para as duas coletas um valor da maré máx. de 2.4 e mín. de 0.3. A obtenção das amostras foi realizada com o amostrador do tipo corer com (30 x 3,5 cm), extremamente marcado e com um encaixe para um separador que foi usado para separar o estrato coletado (Figura 5B). A cada hora, durante 6 horas, no mesmo local, foram coletadas 3 réplicas independentes de cada um dos três estratos verticais, (0-10 cm); (10-20 cm) e (20-30 cm), totalizando 9 amostras a cada hora e 108 amostras no total de cada coleta (Figura 5C). Para evitar que a coleta anterior causasse alguma perturbação na seguinte, um pequeno deslocamento lateral foi realizado a cada amostragem. No primeira hora (maré 2,4) as amostras foram coletas quando a maré ainda cobria o ponto de coleta; na segunda hora (maré 1,9) ainda havia influência do swash durante as ondas, o que manteve a região ainda completamente molhada; finalmente, da terceira hora (maré 1,5) em diante, o sedimento permaneceu completamente exposto e cada vez mais seco. Desse modo, no total, neste estudo foram realizadas coletas ao longo de 4 refluxos de maré, dois refluxos em 2022 (um diurno e um noturno), repetido em 2023, na mesma localidade, totalizando 216 amostras (Figura 4 A).

As amostras coletadas foram fixadas em solução de formaldeído salino (10% + 1 ml/L de bórax), logo após a coleta, para evitar o comprometimento tecidual dos organismos, as amostras foram acondicionadas em potes plásticos, etiquetadas e armazenadas (Figura 5D).

Figura 5. Procedimento no campo e no laboratório. A. Processo de coleta das amostras; B. Amostrador do tipo corer (30x 3,5 cm); C.Réplicas independentes de cada estrato; D. Amostras fixadas em solução de formaldeído salino; E. Lavagem das amostras; F. Triagem e identificação dos organismos; G. Quantificação dos grupos por amostra.

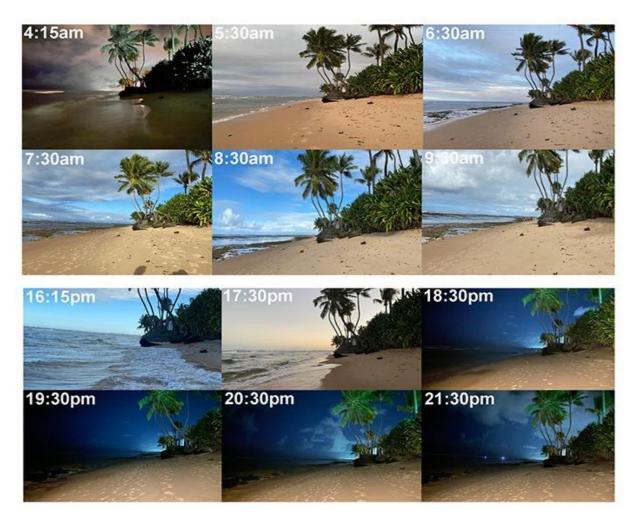


Figura 6. Esquema representativo com fotos do local do estudo no momento de cada amostragem. A. Segundo experimento, observação diurna. B. Segundo experimento, observação noturna.

1.2.4 Processamento das Amostras

Após a coleta e fixação das amostras no campo, o restante do processamento ocorreu no laboratório. Os estratos da meiofauna primeiramente foram lavados, através do processo de elutriação manual adaptado de Gray e Rieger (1971), onde o sedimento foi lavado por 10 vezes com água filtrada. Durante este processo, o material foi filtrado em um jogo de peneiras de 1mm e de 45μm, com o objetivo de separar a meiofauna (Figura 5E), e armazenados em recipientes contendo formalina neutra a 5 %. A próxima etapa foi a triagem das amostras, na qual utilizou-se de uma cuba de *Dollfus*, com marcações quadriculadas na base, sob um microscópio estereoscópico Olympus (SZ61) e estiletes feitos com alfinetes entomológicos (Figura 5F). Finalmente, os organismos de cada amostra foram identificados em grandes grupos: Tardigrada, Nematoda, Gastrotricha, Acari, Copepoda, Ostracoda, Oligochaeta, Polychaeta e Platyhelminthes e quantificados (Figura 5G).

1.2.5 Análise de Dados

Após a identificação e quantificação das amostras, foram realizadas análises estatísticas e construção de gráficos utilizando o software Rstudio (RStudio Team, 2023).

Para analisar as similaridades entre o conjunto de dados, foi realizada uma análise multivariada NMDS (Non-Metric Multidimensional Scaling ou Escalonamento Multidimensional Não Métrico), utilizando o pacote *vegan*, para analisar as variáveis bióticas (abundâncias dos grupos taxonômicos) e abióticas: Período (dia e noite), Maré [1 (mais alta), 2, 3, 4, 5 e 6 (mais baixa)] e Estrato [(0-10cm), (10-20cm e (20-30cm)]. Os dados de abundância foram logaritmizados (logX +1) e foi aplicada a distância de Bray-Curtis para a análise. Para a plotagem dos dados, foram utilizadas cores e formas diferentes para as variáveis abióticas e foi utilizado o pacote ggplot2 (Figura 7).

Posteriormente, foi realizada uma Análise de Variância Multivariada de Permutação (PERMANOVA) para avaliar se existia diferenças significativas entre as variavéis (estrato, período e maré), em seguida foi feita uma univariada para cada grupo, usando a distribuição de Poisson, que é adequada para dados de contagem e utilizado um modelo linear generalizado (GLM) para relacionar a distribuição da variável resposta sobre cada variável preditores, equivalente a uma análise de variância, mas usando dados com distribuição de Poisson ao invés de normal. Os resultados das análises estão apresentados como Anexo. Foram plotadas, usando o pacote ggplot2 do R, a abundância de cada grupo taxonômico para os diferentes estratos ao longo do refluxo da maré, para cada período (diurno e noturno), e para cada ano, em gráficos de boxplot, também gerados no software RStudio.

1.3. RESULTADOS

1.3.1. Análise Descritiva

Foram analisadas 216 amostras, e encontrado um total de 279.936 organismos, distribuídos em 9 diferentes táxons da meiofauna: Tardigrada, Nematoda, Gastrotricha, Acari, Copepoda, Ostracoda, Oligochaeta, Polychaeta e Platyhelminthes.

No ano de 2022 foram identificados 118.436 organismos, sendo 50.325 indivíduos para a coleta diurna e 68.111 indivíduos para a coleta noturna. Foi observada na coleta diurna que o grupo Nematoda foi o mais abundante, contribuindo com 17.235 indivíduos, seguidos

dos grupos Copepoda (15.480 indivíduos) e Tardigrada (9.475 indivíduos). Em relação aos estratos, o estrato de 10-20 cm foi o que mais apresentou organismos, tendo 27.658 indivíduos da meiofauna. Enquanto, na observação noturna, os grupos mais abundantes foram Nematodas com 38.865 indivíduos, seguido de Copepoda (17.072 indivíduos) e Ostracoda (3.958 indivíduos). No que se refere aos estratos da coleta noturna, o estrato intermediário (10-20 cm) também foi o que apresentou uma maior quantidade de indivíduos (44.769 organismos).

Durante a coleta de 2023, foram identificados 161.500 organismos, sendo 75.219 indivíduos para a coleta diurna e 86.281 indivíduos coletados para a coleta noturna. Na coleta diurna os mesmos táxons mais abundantes se repetiram, sendo Nematoda com 33.293 indivíduos, Copepoda 18.036 indivíduos e Tardigrada 9.672 indivíduos. Com referência aos estratos, o estrato de 10-20 cm foi o que mais apresentou indivíduos nessa coleta, tendo em conta 46.061 organismos da meiofauna. No entanto, na coleta noturna, os grupos que dominaram foram Nematoda (46.738 indivíduos), Copepoda (17.239 indivíduos) e Tardigrada (8.672 indivíduos). Em relação aos estratos, o estrato de 10-20 cm foi o que mais apresentou indivíduos, com 52.288 organismos.

1.3.2. Análises Estatísticas

A figura 7 exibe uma representação de dados utilizando a análise de Escalonamento Multidimensional Não Métrico (nMDS) para cada coleta. Cada ponto no gráfico representa uma amostra, e a distância entre os pontos reflete a dissimilaridade entre as amostras. A análise foi conduzida utilizando a distância de Bray-Curtis, e a escala das dimensões não é interpretável em unidades específicas. A figura 7 A e D evidencia as diferenças entre as observações (diurna e noturna), a figura 7 B e E as diferenças entre os estratos verticais do sedimento (0-10 cm, 10-20 cm e 20-30 cm) e a figura 7 C e F as diferenças entre as marés (1, 2, 3, 4, 5, e 6).

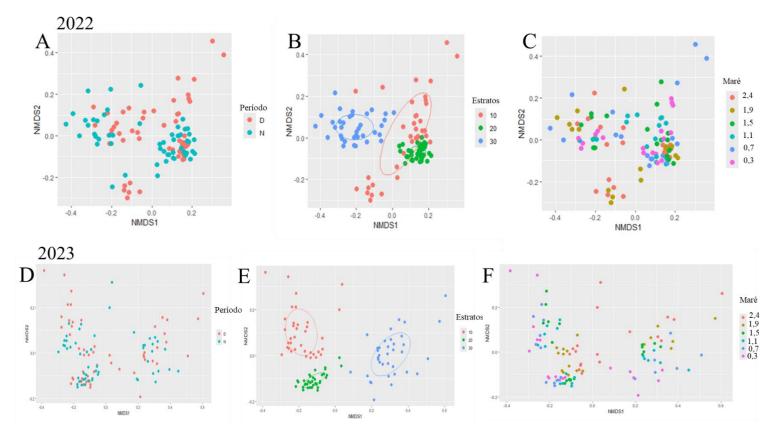


Figura 7. Representação da análise de Escalonamento Multidimensional Não Métrico (NMDS) para cada coleta 2022 e 2023. A e D. Representam as diferenças entre as observações (diurna e noturna); B e E. As diferenças entre os estratos verticais do sedimento (0-10cm, 10-20cm e 20-30cm) e C e F. Refletem as dissimilaridades entre as marés com base nas variáveis analisadas (1, 2, 3, 4, 5, e 6).

O resultado da PERMANOVA em cada coleta, realizada ao longo dos dois anos (Tabela 2 e 3) apontaram que as diferenças entre estratos foram significativas e representaram o principal fator explicativo para a distribuição dos dados, indicando que a composição da fauna muda principalmente nos diferentes estratos, enquanto as diferenças entre os níveis de maré ou o período do dia ou da noite foram menos notáveis.

Tabela 2. Análise de Variância Multivariada de Permutação (PERMANOVA) realizada com base nas variáveis "Estrato", "Período" e " Maré" das amostras no primeiro experimento.

	Df	SumOfSqs	R2	F	Pr(>F)
Estrato	2	114.660	0.52631	666192	0.001
Período	1	0.6312	0.02897	73347	0.001
Maré	1	0.03161	0.01451	36729	0.009
Estrato: Período	2	0.06806	0.03124	39542	0.001
Residual	101	0.86971	0.39897	NA	NA
Total	107	217.856	100.000	NA	NA

Tabela 3. Análise de Variância Multivariada de Permutação (PERMANOVA) realizada realizada com base nas variáveis "Estrato", "Período" e " Maré" das amostras no segundo experimento.

	Df	SumOfSqs	R2	F	Pr(>F)
Estrato	2	180.238.152	0.665552556	122.862.190	0.001
Período	1	0.02547400	0.009406602	3.472.951	0.019
Maré	1	0.09896292	0.036543330	13.491.928	0.001
Estrato: Período	2	0.04044732	0.014935694	2.757.156	0.026
Residual	101	0.74083220	0.273561818	NA	NA
Total	107	270.809.796	1.000.000.000	NA	NA

1.3.3 Resultados por grupo taxonômico

Gastrotricha:

O filo Gastrotricha foi o sétimo grupo mais abundante desse estudo, nos dois anos estudados. Nos anos de 2022 e 2023 foram identificados respectivamente 1.030 e 876 espécimes pertencentes ao filo.

Os Gastrotrichas apresentaram um padrão de movimento vertical diurno diferente do observado no período noturno, um padrão que se repetiu nos dois anos.

Nos dois anos estudados, ao longo das descidas de maré diurnas, a maior abundância de gastrotricas mudou do estrato mais superficial (0-10cm) para o intermediário (10-20cm), evidenciando um movimento dos espécimes para o estrato inferior durante a descida da maré (Figura 8).

Entretanto, essa mudança não ocorreu nas observações noturnas dos dois anos estudados, uma vez que durante as descidas da maré, a maior abundância de gastrotricas permaneceu no estrato mais superior do sedimento (0-10cm) (Figura 8).

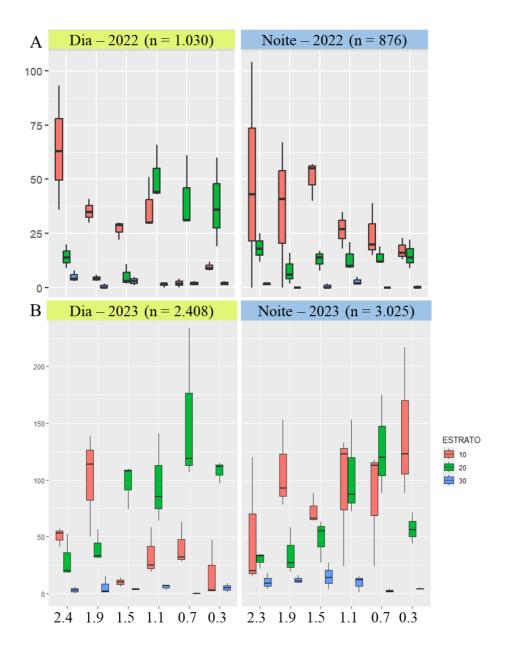


Figura 8. Gastrotricha. Boxplot com os dados de abundância, em cada estrato do sedimento durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e 2023.

Ostracoda:

A figura 9 apresenta um boxplot com abundância dos Ostracodas nos diferentes estratos do sedimento ao longo da maré vazante, para os períodos diurno e noturno nos anos de 2022 e 2023. Nos dois anos estudados, o grupo Ostracoda foi o quarto grupo mais abundante desse estudo. Foram identificados respectivamente 2.830 para o ano de 2022 o e 3.958 espécimes para o ano de 2023.

No entanto, foi indicada nos dois experimentos nas observações diurnas, na primeira e

segunda hora da coleta, o estrato superior (0-10 cm) apresentou a maior abundância de indivíduos em relação aos outros dois estratos. Nas demais horas de coleta, os indivíduos migraram para os estratos intermediários (10-20 cm), se concentrando nesse estrato durante toda maré vazante.

Ao longo da maré vazante noturna, nos dois anos, foi observada uma maior abundância no estrato superior (0-10 cm). Entretanto, alguns organismos se concentraram, em um número bem reduzido, no estrato intermediário (10-20 cm) e inferior (20-30 cm) no decorrer de toda a coleta, apresentando desse modo um padrão diferente do encontrado para o período diurno.

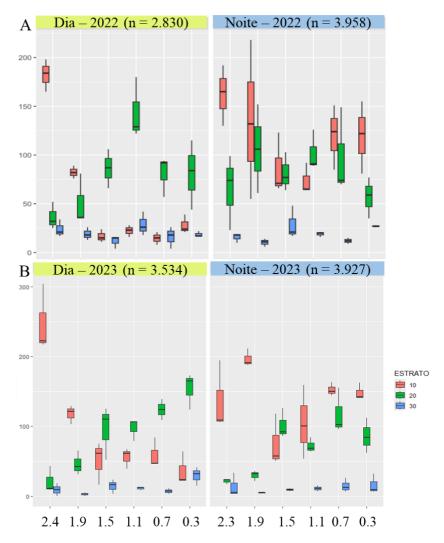


Figura 9. Ostracoda. Boxplot com os dados de abundância, em cada estrato do sedimento durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e 2023.

Platyhelminthes:

O Filo Platyhelminthes foi o oitavo grupo mais abundante nesse estudo, apresentando

uma distribuição dos espécimes aparentemente aleatória ao longo da maré vazante, em todos os estratos (0-10 cm), (10-20 cm) e (20-30 cm) do sedimentos, tanto para as observações diurnas como noturnas, sendo identificados 743 espécimes para o ano de 2022 e 756 espécimes para o ano de 2023 (Figura 10).

Os Platyhelminthes, nos experimentos diurno, nos primeiros horários quando a maré ainda cobria, o estrato superior (0-10 cm), foi observado uma boa quantidade de organismo, contudo no decorrer do tempo houve uma preferência desses organismos pelo estrato intermediário (10-20 cm), ocorrendo assim uma migração vertical nos dois anos estudados.

No período noturno do ano de 2022, o grupo apresentou uma maior abundância no estrato superior (0-10 cm), seguido do estrato intermediário (10-20 cm). Entretanto, no ano de 2023 embora tenha mantido o mesmo padrão, os organismos tiveram uma maior preferência pelo estrato intermediário (10-20 cm).

Ou seja, durante o dia, espécimes de Platyhelminthes apresentaram um movimento vertical conforme a maré, mas esse padrão não foi observado nas coletas noturnas.

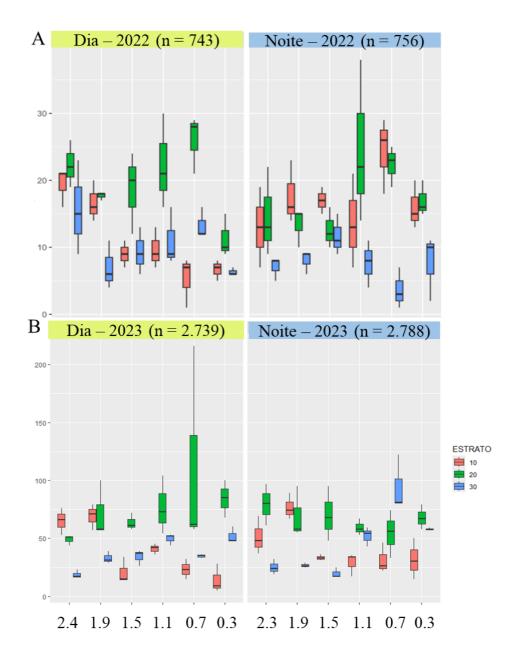


Figura 10. Platyhelminthes. Boxplot com os dados de abundância, em cada estrato do sedimento durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e 2023.

Oligochaeta:

Sendo o sexto grupo mais abundante, com 1.301 organismos para o primeiro experimento e 1.283 indíviduos para o segundo experimento. O grupo Oligochaeta foi observado um comportamento diferente dos espécimes nos estratos do sedimento ao longo da maré vazante, para os períodos diurno e noturno (Figura 11).

No decréscimo diurno da maré, nos dois anos, nas primeiras horas os organismos

dominaram o estrato intermediário (10-20 cm). Contudo, a partir das horas seguintes com o sedimento mais exposto e seco, os organismos se tornaram mais abundantes no estrato superior (0-10 cm). Entretanto, apresentando assim um padrão de comportamento no qual há uma migração vertical na direção oposta da esperada, de baixo para cima.

De acordo com os dados apresentados nas coletas noturnas, os Oligochaetas no início ocuparam principalmente o estrato intermadiário (10-20 cm), porém no decorrer da maré vazante, os indivíduos também se moveram para o estrato superior (0-10 cm), repetindo o padrão observado durante o dia, de um movimento oposto ao da maré, nos dois anos estudados.

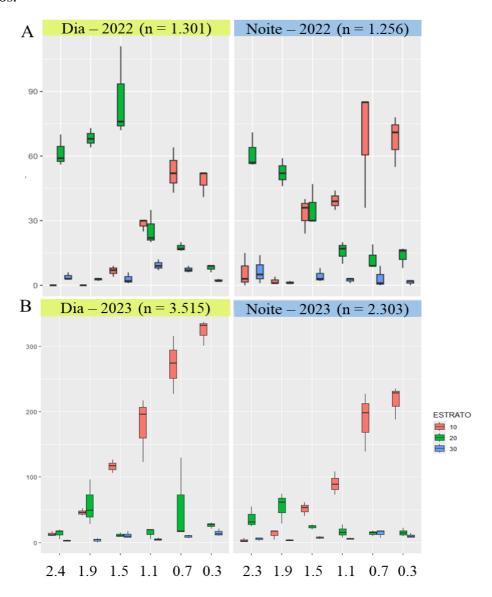


Figura 11. Oligochaeta. Boxplot com os dados de abundância, em cada estrato do sedimento durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e 2023.

Nematoda:

O Filo Nematoda apresentou uma distribuição dos espécimes mais representativa em apenas dois estratos do sedimento (10-20 cm) e (20-30 cm) ao longo da maré vazante, para os períodos diurno e noturno nos dois anos (Figura 12). Sendo o grupo com maior dominância em todas as amostras, apontando 56.100 organismos no ano de 2022 e 38.865 indivíduos no ano de 2023.

No decorrer da maré vazante diurna, nos dois anos os nematodas foram praticamente ausentes no estrato superior (0-10 cm), e tiveram as maiores abundâncias no estrato de 10-20 cm.

Ao longo do movimento da maré no período noturno, a abundância dos nematodas nos dois anos também foi maior no estrato 10-20 cm durante toda maré vazante, assim como no período diurno dos dois anos. Ou seja, os Nematoda aparentemente não realizaram movimentos verticais no sedimento ao longo do movimento da maré, tanto no período diurno como noturno.

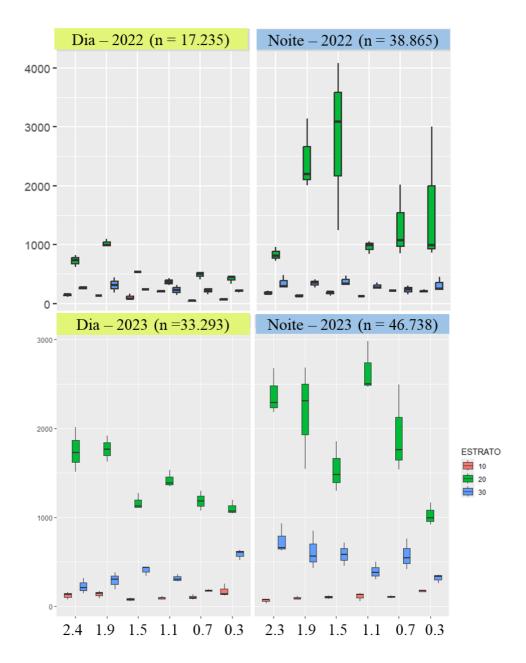


Figura 12. Nematoda. Boxplot com os dados de abundância, em cada estrato do sedimento durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e 2023.

Acari:

No grupo Acari, foi observado um padrão de preferência com maior abundância para a camada intermediária do sedimento (10-20 cm), nos dois anos, tanto nas observações diurnas quanto nas observações noturnas (Figura 13). Os Acari foram responsáveis pela quinta maior abundância nos dois anos de experimentos, com 1.857 organismos para o ano de 2022 e

1.994 organismos para o ano de 2023.

Na maré vazante diurna do primeiro ano, o grupo acari foi presente em todos os estratos, porém no estrato intermediário (10-20 cm) apresentou uma maior abundância dos organismos, havendo também uma parte dos indivíduos nos outros dois estratos. No segundo ano, o mesmo padrão foi observado ao longo de toda maré vazante.

Durante o decréscimo noturno da maré, nos dois anos, os organismos tiveram presentes em todos os estratos, entretanto apresentaram uma predileção pelo estrato intermediário (10-20 cm) do sedimento ao longo de toda maré vazante, não apresentando nenhum movimento entre os estratos.

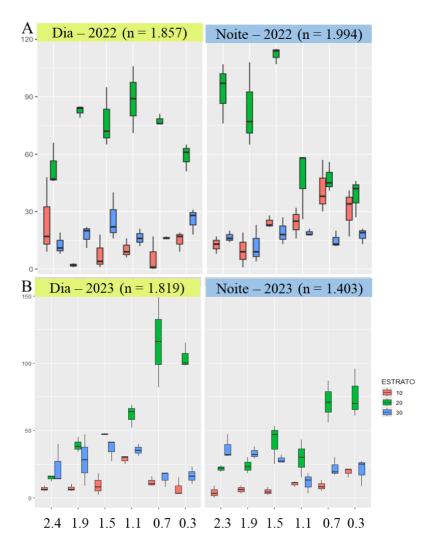


Figura 13. Acari. Boxplot com os dados de abundância, em cada estrato do sedimento durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e 2023.

Copepoda:

O grupo Copepoda foi o segundo com maior abundância nos dois anos estudados. Os resultados para o grupo Copepoda, nos dois anos do experimento diurno, apontaram que ao longo da maré vazante, foi observada uma diminuição na abundância dos estratos superiores 0-10 cm e um aumento da abundância do estrato intermediário (10-20 cm), sugerindo um movimento de enterramento, seguindo a maré (Figura 14).

Durante os experimentos noturno ao longo da maré vazante, não houve movimento significativos entre os estratos, e a abundância predominou no estrato intermediário (10-20 cm) ao longo das coletas. Esse resultado sugere uma leve migração diurna e uma ausência de migração noturna (Figura 14).

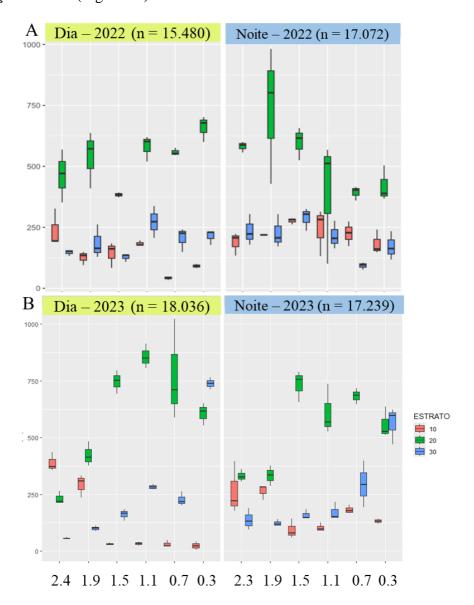


Figura 14. Copepoda. Boxplot com os dados de abundância, em cada estrato do sedimento durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e 2023.

Tardigrada:

O filo Tardigrada foi terceiro grupo com maior abundância desse estudos, com 30.820 indíviduos. A figura 15 apresenta a distribuição dos espécimes de tardigrada nos diferentes estratos do sedimento ao longo da maré vazante, para os períodos diurno e noturno nos dois anos de estudo.

Os espécimes de tardigrada, nos dois anos, apresentaram uma preferência pelo estrato superior (0-10 cm). Sendo que na primeira coleta, no experimento diurno, nos primeiros horários, foram praticamente ausentes no estrato superior (0-10 cm) e no estrato inferior (20-30 cm). Entretanto, a partir da terceira hora em diante, os espécimes de tardigrada se tornaram cada vez mais abundantes no estrato superior (0-10 cm) ao longo de toda a descida da maré. No ano seguinte, esse mesmo padrão foi encontrado, tendo o estrato superior (0-10 cm) com um aumento na quantidade de indíviduos ao longo da descida da maré.

Ao longo da maré vazante noturna, no primeiro ano, os espécimes se tornaram mais abundantes no estrato superficial na terceira hora e permaneceram, mas sem aumentar a abundância ao longo da maré vazante, como ocorreu durante o dia. No segundo ano, também houve um aumento da abundância de espécimes no estrato superior (0-10 cm) ao longo da maré vazante, conforme o padrão observado para o período diurno nos dois anos. Os tardigradas aparentemente se movimentam para a superfície do sedimento durante a maré vazante, pois esse padrão foi observado nas duas observações diurnas e também nas duas observações noturnas.

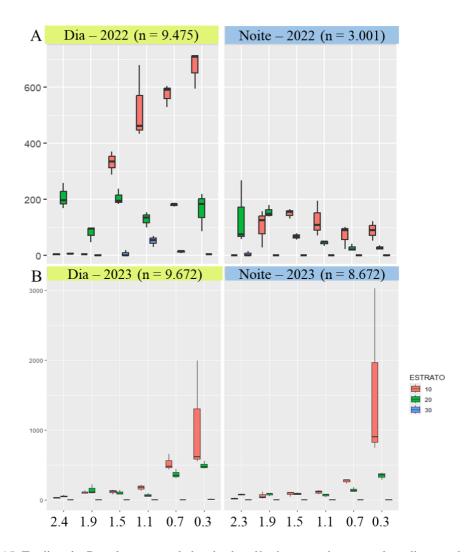


Figura 15. Tardigrada. Boxplot com os dados de abundância, em cada estrato do sedimento durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e 2023.

Polychaeta:

O grupo Polychaeta, apresentou a menor abundância entre os grupos estudados. Pra esse grupo, foi observada uma distribuição aparentemente aleatória ao longo da descida da maré tanto para as observações diurnas e noturnas, nos dois anos de estudos (Figura 16). Ou seja, aparentemente não há uma direção para os movimentos, independente do período do dia, durante a maré vazante.

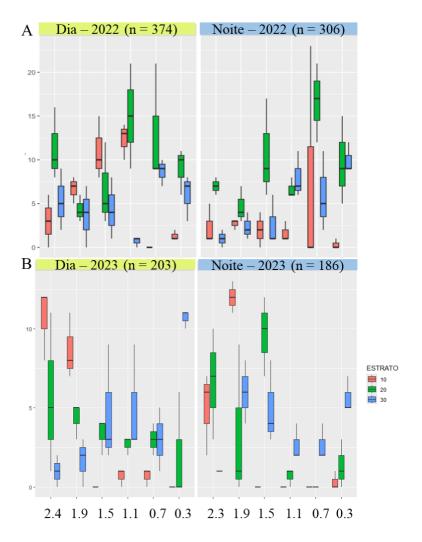


Figura 16. Polychaeta. Boxplot com os dados de abundância, em cada estrato do sedimento durante a variação da maré, nos períodos diurno e noturno dos anos de 2022 e 2023.

1.4. DISCUSSÃO

Durante o período diurno, os grupos Gastrotricha, Ostracoda, Platyhelminthes e Copepoda apresentaram um padrão de movimento vertical que confirma a hipótese desse estudo, de que a migração dos táxons seriam maiores no período diurno do que no noturno e de que, pelo menos, alguns grupos deslocariam para camadas mais profundas do sedimento. Esse comportamento migratório para os estratos mais profundos ao longo da maré vazante parece estar associado a uma estratégia de adaptação para evitar condições adversas no estrato superficial, como a força hidrodinâmica das ondas e a exposição à luz solar e consequente aumento da temperatura. Esses fatores tornam o estrato superficial menos estável e mais hostil, motivando esses organismos a se refugiarem nas camadas mais

profundas, onde encontrará um ambiente mais protegido e com maior estabilidade.

Os grupos Gastrotricha, Ostracoda, Platyhelminthes e Copepoda, durante o período noturno, e os grupos Oligochaeta e Tardigrada, nos períodos diurno e noturno, divergiram da hipótese inicial do trabalho, na qual era que ocorria a migração vertical dos organismos. A ausência de migração vertical nesses grupos pode estar relacionada a alguns fatores ecológicos e comportamentais específicos de cada táxon, como o hábitos de vida e locomoção limitada. Muitos desses organismos têm mobilidade limitada e são adaptados para viver em nichos específicos dentro do sedimento, o que reduz a necessidade ou a capacidade de migração vertical.

Observou-se que os grupos Polychaeta, Nematoda e Acari fizeram parte de uma distribuição sem um padrão definido ao longo dos estratos nos dois períodos de coleta. Em particular, os grupos Acari e Nematoda ficaram consistentemente no estrato intermediário, sem realizar qualquer movimento vertical. Essa preferência pelo estrato intermediário pode estar associada à ausência de luz solar direta, o que evita a dessecação do sedimento e cria um ambiente mais favorável para a sobrevivência desses organismos. Esse estrato intermediário oferece, assim, uma umidade e estabilidade de temperatura que favorecem o modo de vida desses grupos. Embora o grupo Polychaeta tenha sido encontrado em todos os estratos, sua presença distribuída entre os estratos pode indicar a existência de diferentes espécies com diferentes hábitos de vida. No entanto, o número de indivíduos de Polychaetas registrados foi baixo nas duas coletas, o que limita uma análise mais conclusiva sobre seu padrão de distribuição vertical. Além disso, os resultados para os grupos Polychaeta, Nematoda e Acari no presente estudo não corroboram a hipótese de movimento dos organismos ao longo do refluxo da maré. A ausência de padrões claros pode ser influenciada por variações ambientais locais ou por características específicas desses grupos, que parecem responder de forma única às condições ambientais sedimentares.

Para o grupo Tardigrada, o fator que pode explicar o resultado do seu deslocamento em direção as camadas mais superiores pode ser a busca por possíveis presas (diatomáceas), visto que ao analisar o conteúdo intestinal de alguns indivíduos desse grupo, foi verificado a presença de resquícios das mesmas. Todavia, no que diz respeito as algas, segundo Moens et al., 2013, é comum que durante a maré baixa ocorra um aumento da produtividade de algas nessas camadas, devido a presença de nutrientes e luz solar. Durante o período noturno, esse mesmo padrão foi encontrado, no entanto em pequenas quantidades de organismos.

Para o grupo Platyhelminthes, em ambos os anos de estudo, observou-se que, durante o período diurno, esses organismos realizaram migração, concentrando-se principalmente nos

estratos intermediários e inferiores do sedimento. Isso pode ser explicado pelo comportamento de alguns organismos desse filo, que são predadores de nematódeos e outros táxons da meiofauna, conforme sugerido por Watzin (1983). Esses platelmintos podem estar seguindo os nematódeos em direção às camadas inferiores durante a maré baixa, onde ocorreu uma alta dominância de Nematoda nos estratos intermediários e inferiores, corroborando assim a hipótese de que a distribuição vertical, no período diurno, é influenciada pela dinâmica alimentar. No período noturno, durante a maré baixa, observouse, em alguns momentos, um deslocamento para as camadas superficiais do sedimento. Esse comportamento é semelhante ao observado em South Bay, Irlanda do Norte, onde os platelmintos se movem em direção à superfície durante a maré baixa para forragear, conforme descrito por Boaden e Platt (1971). Alguns indivíduos desse grupo podem se alimentar de diatomáceas e outros organismos autotróficos, o que sugere que esse movimento ascendente está relacionado ao aumento de diatomáceas bentônicas nas camadas superficiais. Contudo, essas diatomáceas são geralmente transportadas pela maré para o sedimento, o que também contribui para a presença desse recurso alimentar nas camadas superiores.

De acordo com Silva, Grohmann e Esteves (1997), a hidrodinâmica das ondas desempenha um papel fundamental no transporte dos organismos meiofaunais, especialmente do grupo Copepoda. Quando as ondas quebram, elas giram o sedimento e suspendem esses organismos, facilitando sua dispersão e redistribuição. Isso explica o aumento da abundância de Copepoda no primeiro estrato durante a primeira hora das coletas diurnas. Nesse período inicial, a força das ondas é mais intensa, proporcionando as condições ideais para que esses organismos sejam transportados e permaneçam temporariamente mais concentrados na camada superficial do sedimento antes de serem redistribuídos para os outros estratos. Segundo Silva (2006), em seu estudo, o grupo Copepoda apresentou maior abundância no estrato intermediário e menor abundância no estrato superficial, o que corrobora com os resultados obtidos na pesquisa realizada na Praia do Forte.

Para o grupo Nematoda, foi fornecido que a estabilidade no estrato intermediário (10-20 cm) pode ser explicada pelo seu modo de alimentação e locomoção, que estão diretamente relacionados à morfologia corporal. Segundo Thistle e Sherman (1985), Soetaert et al. (2002) e Schratzberger et al. (2007), a forma da cauda, o tamanho e a conformação do corpo são fatores reconhecidamente importantes para explicar a capacidade de movimentação dos nematodas. Além disso, Boaden e Platt (1971) sugeriram que espécies de nematoda com cutículas menos desenvolvidas apresentam menor tolerância a eventos de dessecação e a

mudanças nas condições físico-químicas do substrato, como temperatura e salinidade. Por essa razão, esse grupo tende a migrar para camadas sedimentares mais profundas, onde as condições são mais favoráveis, o que reforça o padrão de permanência nos estratos intermediários.

No trabalho de Kotwicki et al., (2005) realizado em seis praias arenosas ao longo do Mar do Norte, a meiofauna estava principalmente concentrada na superfície da areia, com cerca de 70% e presente nos primeiros 5 cm superiores, diferente do trabalho realizado na qual a meiofauna esteve mais concentrada nos estratos intermediários (10-20 cm), sendo 98% indíviduos para a primeira coleta e 72% indíviduos para a segunda coleta.

Como observado nos resultados de similaridade entre os conjuntos de dados, as diferenças entre os estratos foram mais evidentes na distribuição dos dados. No entanto, o estudo de Baia (2019) na praia Caixa d'Água, Ilha Algodoal-Maiandeua, na qual foi representada por 16 grupos (Acari, Bivalvia, Collembola, Copepoda, Gastrotricha, Kinorhyncha, Insecta Larvae, Mollusca, Nauplius, Nematoda, Oligochaeta, Ostracoda, Polychaeta, Rotifera, Tardigrada e Turbellaria), também demonstrou esse comportamento na estrutura vertical dos estratos, evidenciando diferenças significativas, sendo estas as que melhor explicaram a distribuição dos organismos nas camadas de sedimentos.

De acordo com Veiga et al. (2010), 85,61% das gastrotrichas estavam concentradas nos primeiros 5 cm do sedimento, enquanto apenas 14,39% foram encontradas entre 5 e 10 cm. Em contraste, Moore (1979) registrou muitos desses organismos em profundidades abaixo de 5 cm. Já Harris (1972) observou que, no inverno, a maioria das gastrotrichas se localizou entre 5 e 20 cm de profundidade. Esses resultados corroboram com a nossa hipótese para o período diurno, indicando que esses organismos migraram para camadas mais profundas do sedimento, sendo mais abundantes no estrato intermediário(10-20 cm).

No trabalho de Veiga et al. (2010), sobre a distribuição vertical da meiofauna, o grupo Ostracoda apresentou um padrão de distribuição vertical mais restrito aos primeiros 5 cm de profundidade. No entanto, o estudo realizado no período noturno, nas duas coletas, esse grupo foi encontrado mais restrito às camadas superficiais (0-10 cm). Esse comportamento foi atribuído à exposição ao sol e às altas temperaturas do sedimento durante o dia, o que fez com que, nas coletas diurnas, os ostracodas predominassem nos estratos intermediários (10-20 cm). Esses resultados corroboram a nossa hipótese de que os fatores ambientais além do movimento da maré, influenciam o movimento vertical dos organismos.

O estudo da migração vertical da meiofauna é essencial para compreender a estrutura e o funcionamento dos ecossistemas marinhos, fornecendo bases para a conservação e o

manejo sustentável desses ambientes. As perspectivas futuras para essa área apontam para avanços que podem contribuir no enfrentamento de desafios ambientais, ampliando o conhecimento sobre a ecologia e a biologia da meiofauna e destacando seu papel fundamental nos ecossistemas marinhos, especialmente em um cenário de mudanças climáticas globais.

1.5. CONCLUSÃO

Segundo a hipótese de migração vertical que orientou esse estudo, alguns grupos (Tardigrada e Oligochaeta), apresentaram diferentes padrões de migração, ao longo da maré vazante, sendo apresentado o mesmo padrão durante os dois períodos analisados. Esse comportamento pode ter sido influenciado por alguns fatores físicos, químicos ou da própria biologia do grupo.

Com base nas análises, os grupos Gastrotricha, Ostracoda, Platyhelminthes e Copepoda migraram durante o dia, confirmando as hipóteses inicialmente propostas, de que a migração dos táxons seriam maiores no período noturno do que no diurno e de que, pelo menos, alguns grupos deslocariam para camadas mais profundas do sedimento. Os padrões de migração apresentados ao longo do estudo reforçam a validade dessas hipóteses, mostrando que os movimentos migratórios são influenciados não apenas pelas marés, mas também por outros fatores, como estrato, luminosidade, temperatura, maré indiretamente entre outros. Entretanto, os grupos Gastrotricha, Platyhelminthes, Copepoda e Ostracoda apresentaram comportamentos que diferiram das expectativas, evidenciando a variação comportamental em função do período da noite. Por fim, os grupos Acari, Polychaeta e Nematoda exibiram comportamentos sem um padrão definido, uma observação que se manteve consistente ao longo das análises.

Em alguns grupos, foi observada uma migração dependente da maré, enquanto em outros, notou-se uma variação nos movimentos verticais entre os diferentes períodos. Isso evidencia que as reações dos grupos estudados podem variar conforme as condições ambientais e da biologia do grupo.

A migração vertical reflete um equilíbrio adaptativo entre os desafios ambientais e as estratégias comportamentais dos organismos. Variáveis como luz, temperatura, estratificação do sedimento, marés e ciclos diurnos e noturnos desempenham papéis fundamentais nesse processo. Este estudo é especialmente relevante para as pesquisas sobre

a meiofauna, uma vez que é pioneiro em comparar os movimentos verticais dos organismos nos períodos diurno e noturno.

REFERÊNCIAS

- Baia, E.; Venekey, V. (2019). Distribution patterns of meiofauna on a tropical macrotidal sandy beach, with special focus on nematodes (Caixa d'Água, Amazon Coast, Brazil). **Brazilian Journal of Oceanography**, v. 67, p. e19230.
- Bezerra, T. N. C.; Fonsêca-Genevois, V.; Genevois, B. (1996).Distribuição horizontal e vertical da meiofauna em uma região tropical intermareal (Istmo de Olinda-Pernambuco-Brasil). **Trab. Oceanog. Univ. Fed. PE**, v. 24, p. 249-264.
- Boaden, P. J. S.; Platt, H. M., (1971). Daily migration patterns in an intertidal meiobenthic community. **Thalassia Jugoslavica** v. 7, p. 1-12.
- Boaden, P.J.S., Platt, H.M., (1971). Daily migration patterns in an intertidal meiobenthic community. **Thalass. Jugosl.** 7, 1–12.
- Brown, A. C. & Mclachlan, A. (1990). **Ecology of Sandy Shores.** Amsterdam: Elsevier, p. 328. 1990.
- Brustolin, M. C.; Thomas, M. C.; Lana, P. C. (2013). A functional and morphological approach to evaluate the vertical migration of estuarine intertidal nematodes during a tidal cycle. **Helgoland Marine Research**, v. 67, p. 83-96.
- Camargo, M. G. (2006). SysGran: um sistema de código aberto para análises granulométricas do sedimento. **Revista Brasileira de Geociências**, São Paulo, v. 36, n. 2, p. 371-378, jun.
- Du Yongfen, Gao Shu, Liu Xiaoshou, et al. (2018). Meiofauna and nematode community characteristics indicate ecological changes induced by geomorphic evolution: a case study on tidal creek systems. **Ecological Indicators**, 87: 97–106, doi: 10.1016/j.ecolind.2017.12.037
- Ferreira, B. L. Migração vertical da meiofauna bêntica na zona entremarés em uma praia urbana, Praia do Leblon, Rio de Janeiro/RJ. (2019). **Monografia (graduação em Ciências Biológicas)** Pontifícia Universidade Católica do Rio de Janeiro.
- Folk R.L. & Ward W.C. (1957). Brazos River bar: a study in the significance of grain size parameters. **Journal of Sedimentary Petrology**, 27:3-26.
- Gray, J. S.; Reiger, R. M. (1971). A quantitative study of the meiofauna of an exposed sandy beach at Robin Hood's Bay, Yorkshire. **Journal of the Marine Biology Association. UK**, 51:1-19p.
- Harris, R.P. (1972). The distribution and ecology of the interstitial meiofauna of a sandy beach at Whitsand Bay, East Cornwall. **Journal of the Marine Biological Association of the United Kingdom**, 52: 1-18.
- Higgins, R. P. & Thiel, H. (1988). Introduction to the study of meiofauna. London: **Smithsonian Institution Cress**, 488 p.
- Instituto Brasileiro de Geografia e Estatística (IBGE). Cidades 2022. Rio de Janeiro: **IBGE, 2022.** Disponível em: < https://cidades.ibge.gov.br/brasil/ba/mata-de-sao-joao/panorama>. Acesso em: 01 out. 2023.
- Joint I. R.; Gee J.M.; Warwick R.M. (1982). Determination of Fine-Scale Vertical Distribution of Microbes and Meiofauna in an Intertidal Sediment. **Mar Biol 72**:157-164p.
- Kotwicki, L., Troch, MD, Urban-Malinga, B., Gheskiere, T., & Węslawski, JM (2005).

- Horizontal and vertical distribution of meiofauna on sandy beaches of the North Sea (The Netherlands, Belgium, France). **Helgoland marine research**, 59, 255-264.
- Mare, M. F. (1942). A study of a marine benthic community with special reference to the micro-organisms. **Journal of the Marine Biological Association of the United Kingdom.** 93-118p.
- Martins, M.O.; Almeida, T. C. M.; Domenico, M. D.; (2015). Vertical distribution of meiofauna on reflective sandy beaches. **Brazilian Journal of Oceanography**, v. 63, p. 469-480.
- Mclachlan, A.; Erasmus, T. & Furstemberg, J. P. (1977). Migrations of Sandy beach meiofauna. **Zoologica Africana**, v. 12, p. 257-277.
- Mclachlan, A.; Winter, P. E. D.; Botha, L. (1977). Vertical and horizontal distribution of sub-littoral meiofauna in Algoa Bay, South África. **Mar. Biol.**, v. 40, p. 355-364.
- Mclachlan A. & Brown A. C. (2006). The ecology of sandy shores. 2^a ed., New York: **Acad. Press**, 373 p.
- Moens, T.; Braeckman, U.; Derycke, S.; Fonseca, G.; Gallucci, F.; Gingold, R.; Guilini, K.; Ingels, J.; Leduc, D.; Vanaverbeke, J.; Van colen, C.; Vanreusel, A.; Vincx, M. (2013). Ecology of free-living marine nematodes. In: SCHMIDT-RHAESA, A. (ed.) Handbook of Zoology Gastrotricha, Cycloneuralia and Gnathifera Volume 2: Nematoda, p. 109-152.
- Moore C.G. (1979). The distribution and ecology of psammo littoral meiofauna around the Isle of Man. **Cahiers de Biologie Marine**, 20: 383-415.
- Nimer, E. (1989). **Climatologia do Brasil.** 2. ed. Rio de Janeiro: IBGE. (Departamento de Recursos Naturais e Estudos Ambientais).
- Pfeil, V. (2020). Guide to the Identification of Marine Meiofauna. In:______. Edited by Andreas Schmidt-Rhaesa. Cap. 1, p. 9-16, 2020.
- Renaud-mornant, J.; Bodin, P.; Bodiou, J. Y.; Boucher, G.; De bovée, F.; Castel, J.; Coineau, N.; Courties, C.; Gourbault, N.; Guidi, L.; Lasserre, P.; Soyer, T.; Tourmié, J. (1984). Estimations du rôle énergetiquespatio-temporelle du méiobenthos em milieu littoral: échan-tillonnage et méthodologie. 232 f. Paris: Centro National de la Recherche Scientifique.
- RStudio Team. (2023). RStudio: Integrated Development Environment for R (Version 2023) [Computer software]. **Posit Software, PBC**. Disponível em: https://posit.co/products/open-source/rstudio/
- Schratzberger M.; Warr K.; Rogers S.I., (2007). Functional diversity of nematode communities in the southwestern North Sea. **Mar Environ Res 63**:368-389.
- Sei. (1998). Análise dos atributos climáticos do Estado da Bahia. Salvador, Superintedência de Estudos Econômicos e Sociais da Bahia (SEI), 85p. (**Série Estudos e Pesquisas**, 38).
- Silva, V. M. A. P. da; Grohmann, P. A.; Esteves, A. M. (1997). Aspectos gerais do estudo da meiofauna de praias arenosas. In: Absalão, R. S.; Esteves, A. M. (eds.). **Oecologia Brasiliensis** III: Ecologia de praias arenosas do litoral brasileiro. Rio de Janeiro: UFRJ. p. 67-92.
- Silva, A. P. C. (2006). Efeito da maré na distribuição vertical da meiofauna e de copepoda harpacticoida na praia arenosa de maracaípe (pernambuco, brasil). **Dissertação** (Programa de Pós- Graduação em Oceanografia) Universidade Federal de Pernambuco.
- Silva, I. R.; Guimarães, J. K.; Bittencourt, A.C.S.P.; Rodrigues, T. K.; Neto, G. F. (2016). Modelagens de clima de ondas e transporte sedimentar utilizando o SMC-Brasil: aplicações para a Praia do Forte, litoral norte do estado da Bahia. **Revista Brasileira de Geomorfologia**, v. 17, n. 4.
- Silva, A. L. A.; Mello, M. M. C.; Minalez, J. L. de A. (2019). Coexistência entre o passado e o futuro: Transformações Urbano-Estratégica da Praia do Forte—Ba. **RDE-Revista de Desenvolvimento**

- **Econômico**, v. 2, n. 43.
- Silva Filho, Mário Guimarães da. A influência da maré na distribuição vertical da nematofauna em dois diferentes microhabitats de uma praia arenosa temperada. (2015). Dissertação de Mestrado (Programa de Pós-Graduação em Biologia Animal). Universidade Federal de Pernambuco.
- Soetaert K.; Muthumbi A.; Heip C., (2002). Size and shape of ocean margin nematodes: morphological diversity and depth-related patterns. Mar Ecol Prog Ser 242:179-193.
- Thistle D.; Sherman K.M., (1985). The nematode fauna of a deep-sea site exposed to strong near-bottom currents. **Deep-Sea Research** 32:1077-1088.
- Veiga, Puri; Besteiro, Celia; Rubal, Marcos (2010). The role of sediment type on the vertical distribution of meiofauna at two Galician rias (NW Iberian Peninsula). **Cahiers de biologie marine**, v. 51, n. 3, p. 249-263.
- Walters, Keith; Bell, Susan S. (1986). Diel patterns of active vertical migration in seagrass meiofauna. **Marine Ecology-Progress Series**, v. 34, p. 95.
- Ward, A. R. (1975). Studies on the sublittoral tree-living nematodes of Liverpool. Bay. II. Influence of sediment composition on the distribution of marine nematodes. **Marine Biology**, 30: 217-225.
- Watzin, M.C., (1983). The effects of meiofauna on settling macrofauna: meiofauna may structure macrofaunal communities. **Oecologia** 59, 163–166.
- Weather Spark (2022). **Histórico de condições meteorológicas em agosto de 2022 no Aeroporto Dois de Julho.** Estados Unidos. Disponível em: . Acesso em: 04 de ago. 2024.
- Weather Spark (2023). **Histórico de condições meteorológicas em junho de 2023 no Aeroporto Dois de Julho.** Estados Unidos. Disponível em: . Acesso em: 04 ago. 2024.

APÊNDICE I

Apêndice I: Contagem dos indivíduos nos três estratos de profundidade (0-10 cm), (10-20 cm) e (20-30 cm), realizada durante a primeira coleta no ano de 2022, separada em períodos diurnos e noturnos.

		D			D			D			D		_	D			D			N			N			N			N			N			N	
0 - 10cm		T1			T2			T3			T4			T5			T6			T7			T8			T9			T10)		T11			T12	
Grupos / Réplicas	R1	R2	R3																																	
Tardigrada	2	3	3	5	4	4	288	371	335	462	678	433	529	590	603	709	714	594	0	0	0	157	125	29	155	164	131	108	72	195	90	102	22	122	90	53
Nematoda	116	160	155	130	134	137	83	84	172	209	221	192	51	46	38	48	84	75	166	222	169	160	128	118	208	197	135	129	117	125	214	228	217	210	236	192
Gastrotricha	93	36	63	35	41	30	22	29	30	30	30	51	2	4	0	12	9	8	43	104	0	67	41	0	55	57	40	35	18	27	20	39	15	16	13	23
Acari	48	9	17	1	2	3	4	1	18	6	9	16	17	1	0	19	17	10	13	17	8	19	9	1	22	28	23	32	25	16	57	38	30	34	41	17
Copepoda	327	194	193	95	149	136	162	84	184	178	175	196	44	48	34	91	100	83	134	207	223	219	222	216	282	286	262	282	314	132	274	228	173	148	241	161
Ostracoda	198	165	184	82	89	76	15	11	24	16	23	28	21	8	15	21	39	24	130	192	165	55	218	132	71	66	123	92	65	64	124	85	151	122	155	81
Oligochaeta	0	0	0	0	0	0	10	4	7	25	30	30	64	52	43	41	52	54	0	3	15	1	1	4	40	36	24	35	39	44	85	85	36	71	78	55
Polychaeta	6	0	3	7	8	6	15	9	10	19	13	10	0	0	0	2	1	1	1	5	1	3	2	3	0	2	4	1	3	1	0	0	23	0	1	0
Platytelminthes	21	16	21	14	20	16	9	7	11	13	7	9	8	1	7	7	5	8	13	19	7	23	14	16	15	19	17	21	13	7	29	18	26	13	15	20

		D			D			D			D			D			D			N			N			N			N			N			N	
10 - 20cm		T1			T2	2		T3			T4			T5			T6			T7			T8			T9			T10			T11			T12	
Grupos / Réplicas	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2 I	R3
Tardigrada	259	169	196	9	8 47	96	5 194	4 184	1 237	7 134	99	153	183	185	174	87	219	184	268	59	75	139	180	147	67	78	56	49	34	48	18	41	20	27	7 20	35
	821	621	736	96	5 993	1099) 52ç	545	5 536	431	364	311	506	409	541	334	456	454	722	814	962	2195	2006	3137	3085	4079	1242	1059	990	841	855	1075	2016	992	2 864 3	3006
Gastrotricha	9	20	14		6 3	Δ	111	1 2	2 3	3 43	66	5 44	61	31	31	19	60	36	25	12	18	2	16	6	5 14	. 17	8	10	9	21	19	12	12	9	9 14	22
Acari	66	46	47	8	4 79	85	5 72	2 65	5 95	71	. 89	106	76	81	76	51	65	61	. 76	97	107	65	108	3 77	107	114	115	58	26	58	45	56	41	42	2 27	46
Copepoda	471	352	569	57.	2 637	410	393	3 373	3 384	520	602	620	546	553	576	600	702	678	557	600	588	428	982	802	525	616	657	568	101	512	403	360	415	389	368	504
Ostracoda	52	25	32	3	6 81	. 35	5 87	7 66	6 106	5 129	122	180	94	92	57	115	84	44	23	74	99	61	152	106	64	. 77	103	89	91	126	149	74	70	59	35	77
Oligochaeta	70	56	59	6	4 68	3 73	3 72	2 111	1 76	5 35	22	20	17	20	16	9	9	6	56	57	71	52	59	46	30	30	47	17	20	10	9	9	19	8	3 17	16
Polychaeta	8	10	16	6	6 3	Δ	12	2 3	3 5	15	21	9	21	9	9	6	10	11	8	7	6	3	7	4	. 9	17	6	8	6	6	21	17	12	15	5 9	5
Platyhelminthes	26	22	19	1	7 18	18	8 24	4 12	2 20	21	16	30	21	28	29	15	9	10	13	9	22	15	10	15	16	10	12	22	14	38	23	25	19	15	5 16	20

		D			D			D			D			D			D			N			N			N			N			N			N	
20 - 30cm		T1			T2			T3			T4			T5			T6			T7			T8			T9			T10			T11			T12	
Grupos / Réplicas	R1	R2	R3	R1	R2 R3	3 R	1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3																		
Tardigrada	5	6	9	2	1	1	18	1	1	69	55	31	15	17	8	2	5	4	1	1	15	0	0	1	0	1	0	1	0	0	0	1	0	3	0	1
Nematoda	260	250	296	316	192	445	240	230	247	314	228	144	234	156	257	224	191	225	279	292	485	411	277 3	354	319	474	338	249	277	358	159	242	300	452	234	254
Gastrotricha	3	4	8	0	0	2	3	1	5	2	0	2	3	1	2	2	3	1	1	2	2	0	0	0	2	0	0	5	2	2	0	0	0	0	0	1
Acari	11	8	19	22	11	20	16	40	22	12	21	16	17	16	16	31	28	18	14	16	20	4	9	23	27	13	18	18	18	21	13	12	20	21	19	13
Copepoda	133	156	152	129	164	262	109	136	136	337	273	207	241	149	226	231	230	178	223	179	304	207	172 3	304	236	325	304	164	205	277	77	96	105	234	118	163
Ostracoda	17	21	34	18	26	13	4	15	16	26	18	42	26	4	18	22	17	17	10	19	18	11	14	6	48	17	21	16	20	21	12	15	9	28	27	26
Oligochaeta	3	3	6	3	2	3	2	6	1	12	9	7	6	7	9	2	2	3	5	1	14	1	2	1	2	8	3	3	1	3	9	0	1	2	2	0
Polychaeta	2	9	5	0	4	7	4	1	8	0	1	1	9	7	10	3	8	7	1	0	2	1	4	2	6	1	1	11	7	6	2	11	5	12	9	9
Platytelminthes	9	23	15	4	6	11	9	6	13	8	16	9	12	12	16	6	6	7	8	5	8	9	6	9	11	9	15	8	4	11	3	7	1	2	11	10

APÊNDICE II

Apêndice II: Contagem de indivíduos nos estratos de profundidade (0-10 cm, 10-20 cm, 20-30 cm) durante a segunda coleta de 2023, nos períodos diurnos e noturnos.

		D			D			D			D			D			D			N			N			N			N			N			N	
0 - 10cm		T1			T2			T3			T4			T5			T6			T7			T8			T9			T10			T11			T12	
Grupos / Réplicas	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3												
Tardigrada	29	36	17	134	98	88	140	78	124	125	183	213	653	478	435	1996	614	552	7	11	31	20	40	115	104	107	43	74	115	137	283	232	281	3030	744	904
Nematoda	157	131	76	170	88	148	95	56	79	112	75	94	98	135	79	251	122	138	34	79	77	114	81	83	120	85	103	58	148	136	123	106	92	159	175	175
Gastrotricha	41	53	57	50	139	114	14	6	10	19	25	58	32	63	28	47	2	3	20	15	120	153	93	78	66	64	88	24	133	123	118	113	24	217	88	123
Acari	5	6	9	6	5	10	18	8	2	30	31	25	16	10	9	15	3	3	0	3	9	3	9	6	8	2	4	12	8	11	13	8	5	21	15	21
Copepoda	357	372	436	309	236	333	30	38	30	26	41	33	23	49	23	43	6	23	178	221	397	282	284	226	142	60	80	96	90	126	203	177	167	132	143	122
Ostracoda	222	217	304	129	103	121	75	61	16	67	39	61	46	47	84	64	23	22	106	109	194	191	188	211	118	50	57	53	159	100	163	144	150	162	142	141
Oligochaeta	11	17	10	45	52	41	126	117	106	196	123	217	274	315	227	301	337	332	2	1	6	4	17	17	53	61	40	73	89	108	139	198	227	188	228	235
Polychaeta	12	8	12	11	8	7	0	0	0	0	1	1	1	1	0	0	0	0	6	2	7	11	13	12	0	0	0	0	0	0	0	0	0	0	1	0
Platytelminthes	66	76	53	71	57	79	34	14	15	45	36	42	15	23	32	28	5	9	37	48	69	74	89	67	36	31	33	34	17	35	26	22	46	50	15	30

		D			D			D			D			D			D			N			N			N			N			N			N	
10 - 20cm		T1			T2			T3			T4			T5			T6			T7			T8			T9			T10			T11			T12	
Grupos / Réplicas	R1	R2	R3	R1	R2 R	3																														
Tardigrada	35	51	67	90	220	110	144	83	84	97	41	59	350	438	310	472	556	445	72	63	92	90	94	53	105	75	83	81	78	37	182	128	119	286	358	389
Nematoda	1512	2011	1726	1767	1920	1627	1106	1126	1271	1529	1345	1387	1296	1181	1073	1067	1196	1042	2181	2673	2288	2681	2311	1544	1479	1852	1300	2470	2498	2981	1761	1535	2492	916	1165	996
Gastrotricha	20	52	18	31	33	56	108	110	74	141	64	85	234	119	107	112	115	97	33	22	35	58	27	19	63	27	55	72	153	87	120	88	175	56	71	44
Acari	16	16	12	34	38	45	48	47	47	52	69	64	82	149	116	100	115	98	24	19	22	18	23	30	47	25	53	30	43	15	56	71	87	70	61	96
Copepoda	212	266	219	376	413	483	693	752	795	914	806	850	1023	711	588	616	553	651	362	307	327	377	287	335	789	656	757	569	736	527	648	687	717	511	526	636
Ostracoda	9	43	11	31	65	42	125	110	52	107	79	106	109	139	124	173	165	124	17	23	23	32	36	21	126	92	86	64	84	68	155	102	96	62	112	84
Oligochaeta	17	19	5	28	96	49	10	9	15	20	19	5	129	16	17	27	30	21	24	55	31	29	74	61	27	19	25	27	15	7	9	15	18	9	14	22
Polychaeta	11	5	1	3	5	5	4	4	2	2	3	3	4	2	3	0	0	6	7	3	10	0	1	9	12	10	7	1	0	1	0	0	0	1	0	3
Platytelminthes	51	52	44	58	57	100	72	61	58	73	104	54	216	58	62	85	68	100	80	61	97	58	55	95	95	68	48	53	67	58	33	56	74	67	58	79

		D			D			D			D			D			D			N			N			N			N			N			N	
20 - 30cm		T1			T2			T3			T4			T5			T6			T7			T8			T9			T10			T11			T12	
Grupos / Réplicas	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2	R3	R1	R2 H	R3
Tardigrada	0	0	0	0	0	0	0	0	1	1	0	1	0	0	1	5	15	3	0	0	0	0	0	2	0	0	0	1	C	0	2	0	0	0	1	3
Nematoda	210	148	317	377	193	301	343	435	443	360	306	280	165	191	177	522	633	606	629	928	656	566	433	845	584	718	456	500	303	379	759	542	420	257	356	336
Gastrotricha	3	0	6	1	. 2	15	3	4	4	7	3	7	0	0	1	5	9	1	9	18	4	16	9	11	27	14	4	12	1	15	4	1	2	4	4	5
Acari	14	14	40	28	9	47	27	41	41	31	40	35	8	18	18	16	23	10	32		31	38	32	29	27	32	26	18	3	13	30	17	19	9	25	27
Copepoda	55	61	55	101	. 89	112	135	185	167	282	272	296	202	217	262	713	765	738	95	188	131	141	112	119	148	185	146	217	149	151	399	294	193	471	596	624
Ostracoda	9	0	18	3	0	5	3	16	23	13	12	8	7	3	11	15	41	32	5	33	3	5	4	5	11	7	9	7	15	11	26	12	6	6	9	32
Oligochaeta	3	4	1	4	0	6	17	9	7	4	3	7	11	6	10	13	10	21	6	2	7	2	3	5	8	9	5	7	5	5	17	18	7	9	7	14
Polychaeta	1	0	2	2	2 3	0	2	3	9	3	9	3	3	1	5	11	10	11	1	1	1	6	8	4	3	4	8	2	2	4	4	2	2	7	5	5
Platytelminthes	23	17	16	39	29	31	37	39	26	52	53	44	35	36	33	48	60	48	32	19	24	29	25	26	25	17	17	54	59	43	122	80	81	58	57	59

ANEXOS

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Tardigrada (ano 2022). Os valores apresentados incluem a Estimate; Erro Padrão; Estatística z; Níveis de Significância (p-valor); Graus de Liberdade; Deviance; Graus de Liberdade Residual e Deviância Residual.

COEFFICIENTS:	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	3.840840	0.044283	86735	< 2e-16 ***
Estrato20	1.239736	0.061285	20229	< 2e-16 ***
Estrato30	-1.717805	0.165861	-10357	< 2e-16 ***
Períodon	0.282035	0.075501	3736	0.000187 ***
Maré	0.485594	0.008949	54263	< 2e-16 ***
Estrato20:períodon	0.112469	0.101029	1113	0.265611
Estrato30:períodon	-0.635102	0.416591	-1525	0.127379
Estrato20:maré	-0.485358	0.014085	-34459	< 2e-16 ***
Estrato30:maré	-0.348251	0.038727	-8993	< 2e-16 ***
Períodon:maré	-0.383142	0.017220	-22250	< 2e-16 ***
Estrato20:períodon:maré	-0.005756	0.027231	-0.211	0.832599
Estrato30:períodon:maré	-0.268382	0.151170	-1775	0.075837.

Anova

Analysis of deviance table

Model: poisson, link: log Response: tardigrada

	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)
Null			107	20673.6	
Estrato	2	8985.7	105	11687.9	<2e-16 ***

Período	1	3529.3	104	8158.6	<2e-16 ***
Maré	1	1365.5	103	6793.1	<2e-16 ***
Estrato:período	2	240.1	101	6553.0	<2e-16 ***
Estrato:maré	2	1947.6	99	4605.4	<2e-16 ***
Período: maré	1	864.5	98	3740.9	<2e-16 ***
Estrato:período:maré	2	3.5	96	3737.4	0.1729

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Nematoda (ano 2022). Os valores apresentados incluem a Estimate; Erro Padrão; Estatística z; Níveis de Significância (p-valor); Graus de Liberdade; Deviance; Graus de Liberdade Residual e Deviância Residual.

Glm(formula = Nematoda ~ ESTRATO * PERÍODO * MARÉ, fa	amily = "poisson", data	=Planilha1)		
COEFFICIENTS:	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	5.21419	0.04565	114230	< 2e-16 ***
Estrato20	1.70153	0.04988	34112	< 2e-16 ***
Estrato30	0.52961	0.05617	9429	< 2e-16 ***
Períodon	-0.23989	0.06210	-3863	0.000112 ***
Maré	-0.13327	0.01290	-10335	< 2e-16 ***
Estrato20:períodon	0.81766	0.06656	12285	< 2e-16 ***
Estrato30:períodon	0.45220	0.07596	5953	2.63e-09 ***
Estrato20:maré	-0.02993	0.01415	-2116	0.034338 *
Estrato30:maré	0.06452	0.01562	4130	3.62e-05 ***
Períodon:maré	0.18799	0.01659	11333	< 2e-16 ***
Estrato20:períodon:maré	-0.04696	0.01790	-2624	0.008701 **
Estrato30:períodon:maré	-0.17446	0.02032	-8586	< 2e-16 ***

Anova

Analysis of deviance table

Model: poisson, link: log

Response: nematoda

Terms added sequentially (first to last)

	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)
Null			107	59917	
Estrato	2	37210	105	22707	< 2.2e-16 ***
Período	1	8562	104	14145	< 2.2e-16 ***
Maré	1	501	103	13644	< 2.2e-16 ***
Estrato:período	2	1357	101	12287	< 2.2e-16 ***
Estrato:maré	2	21	99	12266	2.609e-05 ***
Período: maré	1	467	98	11799	< 2.2e-16 ***
Estrato:período:maré	2	109	96	11690	< 2.2e-16 ***

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Nematoda (ano 2022). Os valores apresentados incluem a Estimate; Erro Padrão; Estatística z; Níveis de Significância (p-valor); Graus de Liberdade; Deviance; Graus de Liberdade Residual e Deviância Residual.

Glm(formula = Gastrotricha ~ ESTRATO * PERÍODO * MARÉ, family	= "poiss" , data =	Planilha1)		
COEFFICIENTS:	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	4.51517	0.08390	53819	< 2e-16 ***
Estrato20	-2.55789	0.16254	-15737	< 2e-16 ***
Estrato30	-3.15265	0.33194	-9498	< 2e-16 ***
Períodon	-0.38815	0.11800	-3289	0.0010 **
Maré	-0.38568	0.02905	-13278	< 2e-16 ***
Estrato20:períodon	1.02628	0.23367	4392	1.12e-05 ***
Estrato30:períodon	-0.59322	0.61509	-0.964	0.3348
Estrato20:maré	0.71143	0.04167	17075	< 2e-16 ***
Estrato30:maré	0.22822	0.09688	2356	0.0185 *
Períodon:maré	0.20037	0.03794	5282	1.28e-07 ***
Estrato20:períodon:maré	-0.52055	0.06103	-8529	< 2e-16 ***

Estrato30:períodon:maré -0.17542 0.17552 -0.999 0.3176

Anova

Analysis of deviance table

Model: poisson, link: log Response: gastrotricha

Terms added sequentially (first to last)

	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)
Null			107	2398.76	
Estrato	2	1201.75	105	1197.00	< 2.2e-16 ***
Período	1	12.46	104	1184.55	0.0004166 ***
Maré	1	40.68	103	1143.87	1.795e-10 ***
Estrato:período	2	72.78	101	1071.08	< 2.2e-16 ***
Estrato:maré	2	279.97	99	791.12	< 2.2e-16 ***
Período: maré	1	0.01	98	791.11	0.9419718
Estrato:período:maré	2	73.55	96	717.56	< 2.2e-16 ***

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Acari (ano 2022). Os valores apresentados incluem a Estimate; Erro Padrão; Estatística z; Níveis de Significância (p-valor); Graus de Liberdade; Deviance; Graus de Liberdade Residual.

Glm(formula = Acari ~ ESTRATO * PERÍODO * MARÉ, Family = "poisson",dat = Planilha1)	a			
COEFFICIENTS:	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	2.69058	0.15379	17495	< 2e-16 ***
Estrato20	1.56444	0.16632	9406	< 2e-16 ***
Estrato30	-0.01853	0.20133	-0.092	0.92667
Períodon	-0.39643	0.20266	-1956	0.05045 .
Maré	-0.08831	0.04202	-2102	0.03558 *

Estrato20:períodon	0.99448	0.22003	4520	6.19e-06 ***
Estrato30:períodon	0.45134	0.27552	1638	0.10139
Estrato20:maré	0.09861	0.04501	2191	0.02848 *
Estrato30:maré	0.16534	0.05266	3140	0.00169 **
Períodon:maré	0.31791	0.05140	6185	6.23e-10 ***
Estrato20:períodon:maré	-0.51405	0.05650	-9099	< 2e-16 ***
Estrato30:períodon:maré	-0.37142	0.06927	-5362	8.22e-08 ***

Anova

Analysis of deviance table

Model: poisson, link: log

Response: acari

	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)
Null			107	2612.06	
Estrato	2	1816.46	105	795.61	< 2.2e-16 ***
Período	1	4.95	104	790.66	0.026128 *
Maré	1	8.34	103	782.32	0.003877 **
Estrato:período	2	87.87	101	694.45	< 2.2e-16 ***
Estrato:maré	2	78.62	99	615.83	< 2.2e-16 ***
Período: maré	1	25.86	98	589.97	3.67e-07 ***
Estrato:período:maré	2	84.97	96	505.00	< 2.2e-16 ***

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Copepoda (ano 2022). Os valores apresentados incluem a Estimate; Erro Padrão; Estatística z; Níveis de Significância (p-valor); Graus de Liberdade; Deviance; Graus de Liberdade Residual e Deviância Residual.

Glm(formula = Copepoda ~ ESTRATO * PERÍODO * MA	ARÉ, family = "poisson", data =	= Planilha1)		
COEFFICIENTS:	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	5.57020	0.04102	135793	< 2e-16 ***
Estrato20	0.46522	0.04776	9742	< 2e-16 ***
Estrato30	-0.60513	0.05809	-10417	< 2e-16 ***
Períodon	-0.14787	0.05452	-2712	0.00668 **
Maré	-0.20185	0.01222	-16518	< 2e-16 ***
Estrato20:períodon	0.74528	0.06367	11705	< 2e-16 ***
Estrato30:períodon	0.87961	0.07677	11457	< 2e-16 ***
Estrato20:maré	0.26839	0.01362	19706	< 2e-16 ***
Estrato30:maré	0.28214	0.01581	17847	< 2e-16 ***
Períodon:maré	0.19680	0.01533	12839	< 2e-16 ***
Estrato20:períodon:maré	-0.37648	0.01757	-21432	< 2e-16 ***
Estrato30:períodon:maré	-0.38884	0.02075	-18739	< 2e-16 ***

Anova

Analysis of deviance table

Model: poisson, link: log Response: copepoda

	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)
Null			107	12198.6	
Estrato	2	8422.4	105	3776.2	< 2.2e-16 ***
Período	1	78.0	104	3698.2	< 2.2e-16 ***
Maré	1	100.5	103	3597.7	< 2.2e-16 ***

Estrato:período	2	298.0	101	3299.7	< 2.2e-16 ***
Estrato:maré	2	49.8	99	3249.9	1.564e-11 ***
Período: maré	1	289.7	98	2960.2	< 2.2e-16 ***
Estrato:período:maré	2	509.7	96	2450.5	< 2.2e-16 ***

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Ostracoda (ano 2022). Os valores apresentados incluem a Estimate; Erro Padrão: Estatística z: Níveis de Significância (p-valor): Graus de Liberdade: Deviance: Graus de Liberdade Residual e Deviância Residual.

0.70315

0.54152

0.50132

-0.65163

-0.39476

0.02828

0.03902

0.02680

0.03448

0.05210

24868

13877

18707

-18896

-7577

< 2e-16 ***

< 2e-16 ***

< 2e-16 ***

< 2e-16 ***

3.53e-14 ***

Glm(formula = Ostracoda ~ ESTRATO * PERÍOI "poisson",data = Planilha1)	OO * MARÉ, family =			
COEFFICIENTS:	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	5.61422	0.05834	96241	< 2e-16 ***
Estrato20	-1.73123	0.08847	-19568	< 2e-16 ***
Estrato30	-2.54141	0.13258	-19169	< 2e-16 ***
Períodon	-0.63013	0.07541	-8356	< 2e-16 ***
Maré	-0.56865	0.02351	-24185	< 2e-16 ***
Estrato20:períodon	124.412	0.11593	10731	< 2e-16 ***
Estrato30:períodon	0.20281	0.19262	1053	0.292

Estrato20:períodon:maré Estrato30:períodon:maré

Estrato20:maré

Estrato30:maré

Períodon:maré

Anova

Analysis of deviance table

Model: poisson, link: log Response: ostracoda

	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)
Null			107	4397.4	
Estrato	2	1997.27	105	2400.2	< 2.2e-16 ***
Período	1	188.32	104	2211.8	< 2.2e-16 ***
Maré	1	88.93	103	2122.9	< 2.2e-16 ***
Estrato:período	2	175.46	101	1947.4	< 2.2e-16 ***
Estrato:maré	2	324.95	99	1622.5	< 2.2e-16 ***
Período: maré	1	71.53	98	1551.0	< 2.2e-16 ***
Estrato:período:maré	2	380.71	96	1170.3	< 2.2e-16 ***

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Oligochaeta (ano 2022). Os valores apresentados incluem a Estimate; Erro Padrão; Estatística z; Níveis de Significância (p-valor); Graus de Liberdade; Deviance; Graus de Liberdade Residual e Deviância Residual.

Glm(formula = Oligochaeta ~ ESTRATO * PERÍODO * MARÉ, family = "poisson", data = Planilha1)						
Estimate	Std. Error	z value	Pr(> z)			
0.24000	0.20991	1143	0.25289			
4.55396	0.22090	20615	< 2e-16 ***			
1.06446	0.33327	3194	0.00140 **			
1.46322	0.24898	5877	4.18e-09 ***			
0.66137	0.04041	16368	< 2e-16 ***			
-1.70130	0.27061	-6287	3.24e-10 ***			
-0.93712	0.44771	-2093	0.03634 *			
-0.98936	0.04635	-21345	< 2e-16 ***			
-0.58938	0.07522	-7836	4.66e-15 ***			
-0.20438	0.04877	-4190	2.78e-05 ***			
0.16549	0.06042	2739	0.00616 **			
-0.07381	0.11309	-0.653	0.51397			
	Estimate 0.24000 4.55396 1.06446 1.46322 0.66137 -1.70130 -0.93712 -0.98936 -0.58938 -0.20438 0.16549	Estimate Std. Error 0.24000 0.20991 4.55396 0.22090 1.06446 0.33327 1.46322 0.24898 0.66137 0.04041 -1.70130 0.27061 -0.93712 0.44771 -0.98936 0.04635 -0.58938 0.07522 -0.20438 0.04877 0.16549 0.06042	Estimate Std. Error z value 0.24000 0.20991 1143 4.55396 0.22090 20615 1.06446 0.33327 3194 1.46322 0.24898 5877 0.66137 0.04041 16368 -1.70130 0.27061 -6287 -0.93712 0.44771 -2093 -0.98936 0.04635 -21345 -0.58938 0.07522 -7836 -0.20438 0.04877 -4190 0.16549 0.06042 2739			

Anova Analysis of deviance table

Model: poisson, link: log Response: oligochaeta

Terms added sequentially (first to last)

	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)
Null			107	3011.00	
Estrato	2	1222.45	105	1788.55	< 2.2e-16 ***
Período	1	0.09	104	1788.46	0.767798
Maré	1	1.40	103	1787.06	0.237442
Estrato:período	2	100.17	101	1686.90	< 2.2e-16 ***
Estrato:maré	2	1115.15	99	571.74	< 2.2e-16 ***
Período: maré	1	16.54	98	555.20	4.763e-05 ***
Estrato:período:maré	2	10.53	96	544.67	0.005178 **

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Polychaeta (ano 2022). Os valores apresentados incluem a Estimate; Erro Padrão; Estatística z; Níveis de Significância (p-valor); Graus de Liberdade; Deviance; Graus de Liberdade Residual e Deviância Residual.

Glm(formula = Polychaeta ~ ESTRATO * PERÍODO * MARÉ, family = "poisson", data = Planilha1)							
COEFFICIENTS:	Estimate	Std. Error	z value	Pr(> z)			
(Intercept)	2.19463	0.20725	10589	< 2e-16 ***			
Estrato20	-0.13932	0.27390	-0.509	0.610998			
Estrato30	-0.95040	0.33411	-2845	0.004447 **			
Períodon	-1.34458	0.39268	-3424	0.000617 ***			
Maré	-0.13635	0.05869	-2323	0.020158 *			
Estrato20:períodon	0.98392	0.47439	2074	0.038074 *			
Estrato30:períodon	0.17437	0.57795	0.302	0.762880			
Estrato20:maré	0.20202	0.07339	2753	0.005910 **			

Estrato30:maré	0.22448	0.08653	2594	0.009484 **
Períodon:maré	0.18442	0.10164	1814	0.069608.
Estrato20:períodon:maré	-0.10789	0.12006	-0.899	0.368850
Estrato30:períodon:maré	0.10823	0.13881	0.780	0.435559

Anova

Analysis of deviance table

Model: poisson, link: log Response: polycheata

	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)
Null			107	506.61	
Estrato	2	91.609	105	415.00	< 2.2e-16 ***
Período	1	5.537	104	409.46	0.018623 *
Maré	1	17.013	103	392.45	3.712e-05 ***
Estrato:período	2	13.719	101	378.73	0.001050 **
Estrato:maré	2	21.624	99	357.11	2.016e-05 ***
Período: maré	1	10.806	98	346.30	0.001012 **
Estrato:período:maré	2	3.733	96	342.57	0.154692

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Platyhelminthes (ano 2022). Os valores apresentados incluem a Estimate; Erro Padrão; Estatística z; Níveis de Significância (p-valor); Graus de Liberdade; Deviance; Graus de Liberdade Residual e Deviância Residual.

Glm(formula = Platyhelminthes ~ ESTRATO * PERÍODO * MARÉ, family = "poisson", data = Planilha1)							
COEFFICIENTS:	Estimate	Std. Error	z value	Pr(> z)			
(Intercept)	321764	0.14100	22820	< 2e-16 ***			
Estrato20	-0.10438	0.18390	-0.568	0.570305			
Estrato30	-0.62927	0.21250	-2961	0.003064 **			
Períodon	-0.57909	0.19561	-2960	0.003072 **			
Maré	-0.25867	0.04396	-5884	4.00e-09 ***			
Estrato20:períodon	0.02305	0.26622	0.087	0.931002			
Estrato30:períodon	0.19633	0.31475	0.624	0.532785			
Estrato20:maré	0.22048	0.05386	4094	4.25e-05 ***			
Estrato30:maré	0.18732	0.06143	3049	0.002293 **			
Períodon:maré	0.31216	0.05534	5641	1.69e-08 ***			
Estrato20:períodon:maré	-0.19063	0.07167	-2660	0.007818 **			
Estrato30:períodon:maré	-0.29220	0.08613	-3393	0.000692 ***			

Anova

Analysis of deviance table

Model: poisson, link: log Response: platyhelminthes

	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)
Null			107	388.18	
Estrato	2	121.634	105	266.55	< 2.2e-16 ***
Período	1	0.113	104	266.44	0.737042

Maré	1	3.322	103	263.11	0.068363
Estrato:período	2	32.430	101	230.68	9.078e-08 ***
Estrato:maré	2	7.563	99	223.12	0.022788 *
Período: maré	1	27.167	98	195.95	1.866e-07 ***
Estrato:período:maré	2	12.904	96	183.05	0.001577 **

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Tardigrada (ano 2023). Os valores apresentados incluem a Estimate; Erro Padrão; Estatística z; Níveis de Significância (p-valor); Graus de Liberdade; Deviance; Graus de Liberdade Residual e Deviância Residual.

ta = Planilha2) COEFFICIENTS:	Estimate	Std. Error	z value	$\Pr(> \mathbf{z})$	
(Intercept)	2.70393	0.05744	47071	< 2e-16 ***	
Estrato20	0.76890	0.08022	9585	< 2e-16 ***	
Estrato30	-9.60866	179.018	-5367	7.99e-08 ***	
Períodon	-1.96984	0.10077	-19548	< 2e-16 ***	
Maré	0.70481	0.01095	64366	< 2e-16 ***	
Estrato20:períodon	1.98520	0.13129	15121	< 2e-16 ***	
Estrato30:períodon	6.34119	211.682	2996	0.002739 **	
Estrato20:maré	-0.25779	0.01585	-16262	< 2e-16 ***	
Estrato30:maré	0.76884	0.31209	2464	0.013757 *	
Períodon:maré	0.37860	0.01848	20489	< 2e-16 ***	
Estrato20:períodon:maré	-0.47538	0.02551	-18633	< 2e-16 ***	
Estrato30:períodon:maré	-140.515	0.38839	-3618	0.000297 ***	
Anova					
Analysis of deviance table					
Model: poisson, link: log					
Response: tardigrada					
Terms added sequentially (first to last)					
	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)

Null			107	41247	
Estrato	2	16570.6	105	24676	< 2.2e-16 ***
Período	1	54.5	104	24622	1.523e-13 ***
Maré	1	17238.9	103	7383	< 2.2e-16 ***
Estrato:período	2	229.4	101	7153	< 2.2e-16 ***
Estrato:maré	2	1380.5	99	5773	< 2.2e-16 ***
Período: maré	1	118.5	98	5655	< 2.2e-16 ***
Estrato:período:maré	2	360.5	96	5295	< 2.2e-16 ***

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Nematoda (ano 2023). Os valores apresentados incluem a Estimate; Erro Padrão; Estatística z; Níveis de Significância (p-valor); Graus de Liberdade; Deviance; Graus de Liberdade Residual e Deviância Residual.

Glm(formula = Nematoda ~ ESTRATO * PERÍODO * MARÉ, fa mily = "poisson",data = Planilha2) COEFFICIENTS:	Estimate	Std. Error	z value	Pr (> z)
(Intercept)	4.61488	0.05116	90209	< 2e-16 ***
Estrato20	2.95639	0.05292	55868	< 2e-16 ***
Estrato30	0.75756	0.06041	12540	< 2e-16 ***
Períodon	-0.51606	0.07749	-6660	2.75e-11 ***
Maré	0.04111	0.01279	3215	0.0013 **
Estrato20:períodon	0.83871	0.07950	10550	< 2e-16 ***
Estrato30:períodon	1.86074	0.08659	21489	< 2e-16 ***
Estrato20:maré	-0.13871	0.01332	-10417	< 2e-16 ***
Estrato30:maré	0.07810	0.01490	5241	1.60e-07 ***
Períodon:maré	0.11594	0.01864	6219	5.01e-10 ***
Estrato20:períodon:maré	-0.11281	0.01927	-5854	4.80e-09 ***
Estrato30:períodon:maré	-0.36532	0.02104	-17362	< 2e-16 ***

Anova

Analysis of deviance table

Model: poisson, link: log Response: nematoda

Terms added sequentially (first to last)

	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)
Null			107	76521	
Estrato	2	66428	105	10093	< 2.2e-16 ***
Período	1	2269	104	7824	< 2.2e-16 ***
Maré	1	1267	103	6556	< 2.2e-16 ***
Estrato:período	2	245	101	6311	< 2.2e-16 ***
Estrato:maré	2	495	99	5816	< 2.2e-16 ***
Período: maré	1	87	98	5729	< 2.2e-16 ***
Estrato:período:maré	2	615	96	5114	< 2.2e-16 ***

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Gastrotricha (ano 2023). Os valores apresentados incluem a Estimate; Erro Padrão; Estatística z; Níveis de Significância (p-valor); Graus de Liberdade; Deviance; Graus de Liberdade Residual e Deviância Residual.

Glm(formula = Gastrotricha ~ ESTRATO * PERÍODO * MARÉ,	family = "poisson",da	ta = Planilha2)		
COEFFICIENTS:	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	4.45487	0.07326	60806	< 2e-16 ***
Estrato20	-0.93365	0.10135	-9212	< 2e-16 ***
Estrato30	-2.95761	0.27427	-10783	< 2e-16 ***
Períodon	-0.39951	0.09567	-4176	2.97e-05 ***
Maré	-0.22354	0.02220	-10067	< 2e-16 ***
Estrato20:períodon	0.30160	0.14146	2132	0.0330 *
Estrato30:períodon	1.76916	0.32365	5466	4.60e-08 ***
Estrato20:maré	0.47035	0.02712	17340	< 2e-16 ***
Estrato30:maré	0.18729	0.07303	2564	0.0103 *
Períodon:maré	0.35078	0.02657	13203	< 2e-16 ***
Estrato20:períodon:maré	-0.39197	0.03544	-11061	< 2e-16 ***

Estrato30:períodon:maré -0.52818 0.08873 -5952 **2.64e-09** ***

Anova

Analysis of deviance table

Model: poisson, link: log Response: gastrotricha

Terms added sequentially (first to last)

	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)
Null			107	5471.9	
Estrato	2	2840.00	105	2631.9	< 2.2e-16 ***
Período	1	70.22	104	2561.7	< 2.2e-16 ***
Maré	1	210.47	103	2351.2	< 2.2e-16 ***
Estrato:período	2	356.57	101	1994.7	< 2.2e-16 ***
Estrato:maré	2	213.23	99	1781.4	< 2.2e-16 ***
Período: maré	1	51.62	98	1729.8	6.719e-13 ***
Estrato:período:maré	2	136.75	96	1593.1	< 2.2e-16 ***

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Acari (ano 2023). Os valores apresentados incluem a Estimate; Erro Padrão; Estatística z; Níveis de Significância (p-valor); Graus de Liberdade; Deviance; Graus de Liberdade Residual.

Glm(formula = Acari ~ ESTRATO * PERÍODO * MARÉ, family = "poisson", data = Planilha2)							
COEFFICIENTS:	Estimate	Std. Error	z value	$\Pr(> z)$			
(Intercept)	2.15087	0.16699	12880	< 2e-16 ***			
Estrato20	0.69265	0.18915	3662	0.000250 ***			
Estrato30	1.36581	0.19518	6998	2.60e-12 ***			
Períodon	-1.17717	0.28709	-4100	4.13e-05 ***			
Maré	0.08569	0.04058	2112	0.034728 *			
Estrato20:períodon	1.05533	0.31714	3328	0.000876 ***			
Estrato30:períodon	1.38559	0.31971	4334	1.46e-05 ***			

Estrato20:maré	0.24501	0.04482	5466	4.59e-08 ***
Estrato30:maré	-0.16727	0.04901	-3413	0.000642 ***
Períodon:maré	0.21909	0.06484	3379	0.000728 ***
Estrato20:períodon:maré	-0.27722	0.07114	-3897	9.76e-05 ***
Estrato30:períodon:maré	-0.28842	0.07579	-3805	0.000142 ***

Anova

Analysis of deviance table

Model: poisson, link: log

Response: acari

	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)
Null			107	2306.36	
Estrato	2	1206.23	105	1100.13	< 2.2e-16 ***
Período	1	53.86	104	1046.27	2.152e-13 ***
Maré	1	247.54	103	798.73	< 2.2e-16 ***
Estrato:período	2	20.32	101	778.41	3.871e-05 ***
Estrato:maré	2	308.99	99	469.42	< 2.2e-16 ***
Período: maré	1	1.69	98	467.73	0.1931364
Estrato:período:maré	2	17.01	96	450.72	0.0002026 ***

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Copepoda (ano 2023). Os valores apresentados incluem a Estimate; Erro Padrão; Estatística z; Níveis de Significância (p-valor); Graus de Liberdade; Deviance; Graus de Liberdade Residual e Deviância Residual.

Glm(formula = Copepoda ~ ESTRATO * PERÍODO	* MARE, family = "poisson", data =	= Planilha2)		
COEFFICIENTS:	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	6.74006	0.03849	175.12	<2e-16 ***
Estrato20	-0.86837	0.04553	-19.07	<2e-16 ***
Estrato30	-319.677	0.06418	-49.81	<2e-16 ***
Períodon	-109.016	0.05364	-20.32	<2e-16 ***
Maré	-0.71238	0.01739	-40.97	<2e-16 ***
Estrato20:períodon	111.360	0.06399	17.40	<2e-16 ***
Estrato30:períodon	170.889	0.08722	19.59	<2e-16 ***
Estrato20:maré	0.85697	0.01830	46.83	<2e-16 ***
Estrato30:maré	119.835	0.02025	59.18	<2e-16 ***
Períodon:maré	0.56226	0.02041	27.55	<2e-16 ***
Estrato20:períodon:maré	-0.59755	0.02203	-27.13	<2e-16 ***
Estrato30:períodon:maré	-0.71396	0.02490	-28.68	<2e-16 ***

Anova

Analysis of deviance table

Model: poisson, link: log Response: copepoda

	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)
Null			107	21352.6	
Estrato	2	10280.1	105	11072.5	< 2.2e-16 ***
Período	1	18.0	104	11054.5	2.199e-05 ***

Maré	1	1458.6	103	9595.9	< 2.2e-16 ***
Estrato:período	2	154.7	101	9441.2	< 2.2e-16 ***
Estrato:maré	2	5123.0	99	4318.2	< 2.2e-16 ***
Período: maré	1	5.5	98	4312.8	0.0192 *
Estrato:período:maré	2	993.3	96	3319.5	< 2.2e-16 ***

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Ostracoda (ano 2023). Os valores apresentados incluem a Estimate; Erro Padrão; Estatística z; Níveis de Significância (p-valor); Graus de Liberdade; Deviance; Graus de Liberdade Residual e Deviância Residual.

Glm(formula = Ostracoda ~ ESTRATO * PERÍODO * MARÉ, family = "poisson", data = Planilha2)							
COEFFICIENTS:	Estimate	Std. Error	z value	Pr(> z)			
(Intercept)	5.74477	0.04640	123813	< 2e-16 ***			
Estrato20	-2.43893	0.08644	-28215	< 2e-16 ***			
Estrato30	-4.31286	0.19819	-21762	< 2e-16 ***			
Períodon	-0.80385	0.06526	-12317	< 2e-16 ***			
Maré	-0.40781	0.01636	-24920	< 2e-16 ***			
Estrato20:períodon	0.87672	0.12425	7056	1.71e-12 ***			
Estrato30:períodon	1.42374	0.26617	5349	8.84e-08 ***			
Estrato20:maré	0.71069	0.02275	31236	< 2e-16 ***			
Estrato30:maré	0.68198	0.04536	15034	< 2e-16 ***			
Períodon:maré	0.39853	0.02021	19719	< 2e-16 ***			
Estrato20:períodon:maré	-0.46973	0.03087	-15219	< 2e-16 ***			
Estrato30:períodon:maré	-0.56713	0.06243	-9084	< 2e-16 ***			

Anova

Analysis of deviance table

Model: poisson, link: log Response: ostracoda

Terms acces sequentially (mass to mass)						
	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)	

Null			107	6303.1	< 2.2e-16 ***
Estrato	2	3599.0	105	2704.0	5.342e-06 ***
Período	1	20.7	104	2683.3	0.0004991 ***
Maré	1	12.1	103	2671.2	< 2.2e-16 ***
Estrato:período	2	149.5	101	2521.7	< 2.2e-16 ***
Estrato:maré	2	915.2	99	1606.5	< 2.2e-16 ***
Período: maré	1	158.6	98	1447.9	< 2.2e-16 ***
Estrato:período:maré	2	271.3	96	1176.6	< 2.2e-16 ***

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Oligochaeta (ano 2023). Os valores apresentados incluem a Estimate; Erro Padrão; Estatística z; Níveis de Significância (p-valor); Graus de Liberdade; Deviance; Graus de Liberdade Residual e Deviância Residual.

Glm(formula = Oligochaeta ~ ESTRATO * PERÍODO * MARÉ, family = "poisson", data = Planilha2)							
COEFFICIENTS:	Estimate	Std. Error	z value	Pr(> z)			
(Intercept)	3.12804	0.06478	48290	< 2e-16 ***			
Estrato20	0.07123	0.12131	0.587	0.557093			
Estrato30	-2.19702	0.25422	-8642	< 2e-16 ***			
Períodon	-1.17115	0.11661	-10043	< 2e-16 ***			
Maré	0.46745	0.01317	35496	< 2e-16 ***			
Estrato20:períodon	2.08440	0.17985	11590	< 2e-16 ***			
Estrato30:períodon	1.44282	0.35734	4038	5.40e-05 ***			
Estrato20:maré	-0.41516	0.02866	-14488	< 2e-16 ***			
Estrato30:maré	-0.18755	0.05542	-3384	0.000714 ***			
Períodon:maré	0.13385	0.02307	5802	6.57e-09 ***			
Estrato20:períodon:maré	-0.45107	0.04459	-10116	< 2e-16 ***			
Estrato30:períodon:maré	-0.19860	0.07856	-2528	0.011471 *			

Anova

Analysis of deviance table

Model: poisson, link: log Response: oligochaeta

Terms added sequentially (first to last)

	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)
Null			107	9569.3	
Estrato	2	5313.1	105	4256.2	< 2.2e-16 ***
Período	1	254.3	104	4001.8	< 2.2e-16 ***
Maré	1	2064.4	103	1937.5	< 2.2e-16 ***
Estrato:período	2	48.9	101	1888.5	2.378e-11 ***
Estrato:maré	2	819.7	99	1068.8	< 2.2e-16 ***
Período: maré	1	0.2	98	1068.7	0.6674
Estrato:período:maré	2	106.0	96	962.7	< 2.2e-16 ***

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Polychaeta (ano 2023). Os valores apresentados incluem a Estimate; Erro Padrão; Estatística z; Níveis de Significância (p-valor); Graus de Liberdade; Deviance; Graus de Liberdade Residual e Deviância Residual.

Glm(formula = Polychaeta ~ ESTRATO * PERÍODO * MARÉ, family = "poisson", data = Planilha2)							
COEFFICIENTS:	Estimate	Std. Error	z value	Pr(> z)			
(Intercept)	3.4327	0.2474	13873	< 2e-16 ***			
Estrato20	-1.5611	0.3575	-4367	1.26e-05 ***			
Estrato30	-3.4831	0.4341	-8024	1.02e-15 ***			
Períodon	-0.4014	0.3618	-1110	0.2672			
Maré	-0.9130	0.1291	-7073	1.51e-12 ***			
Estrato20:períodon	0.9785	0.5041	1941	0.0523			
Estrato30:períodon	1.4976	0.5856	2557	0.0105			
Estrato20:maré	0.7210	0.1499	4809	1.52e-06 ***			
Estrato30:maré	1.2897	0.1493	8640	< 2e-16 ***			

Períodon:maré	0.1316	0.1801	0.731	0.4650
Estrato20:períodon:maré	-0.3344	0.2125	-1574	0.1155
Estrato30:períodon:maré	-0.4259	0.2076	-2052	0.0402 *

Anova

Analysis of deviance table

Model: poisson, link: log Response: polychaeta

Terms added sequentially (first to last)

	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)
Null			107	446.45	
Estrato	2	4.216	105	442.23	0.12149
Período	1	0.743	104	441.49	0.38865
Maré	1	39.859	103	401.63	2.73e-10 ***
Estrato:período	2	0.718	101	400.91	0.69845
Estrato:maré	2	155.954	99	244.96	< 2.2e-16 ***
Período: maré	1	7.897	98	237.06	0.00495 **
Estrato:período:maré	2	4.200	96	232.86	0.12243

Tabelas com os resultados das análises de Modelos Lineares Generalizados (GLM)e de Variância (ANOVA) referentes ao grupo Platyhelminthes (ano 2023). Os valores apresentados incluem a Estimate; Erro Padrão; Estatística z; Níveis de Significância (p-valor); Graus de Liberdade; Deviance; Graus de Liberdade Residual e Deviância Residual.

Glm(formula = Platyhelminthes ~ ESTRATO * PERÍODO * MAR	\acute{E} , family = "poisson",	data = Planilha2)			
COEFFICIENTS:	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	4.547767	0.074634	60934	< 2e-16 ***	
Estrato20	-0.644607	0.100374	-6422	1.34e-10 ***	

Estrato30	-1.480950	0.123724	-11970	< 2e-16 ***
Períodon	-0.269128	0.106012	-2539	0.011128 *
Maré	-0.286913	0.023810	-12050	< 2e-16 ***
Estrato20:períodon	0.732902	0.140741	5207	1.91e-07 ***
Estrato30:períodon	0.026949	0.174742	0.154	0.877433
Estrato20:maré	0.404393	0.028689	14096	< 2e-16 ***
Estrato30:maré	0.433479	0.033202	13056	< 2e-16 ***
Períodon:maré	0.122282	0.032273	3789	0.000151 ***
Estrato20:períodon:maré	-0.288036	0.039801	-7237	4.59e-13 ***
Estrato30:períodon:maré	-0.009748	0.045216	-0.216	0.829302

Anova

Analysis of deviance table

Model: poisson, link: log Response: platyhelminthes

	Df	Deviance Resid.	Df	Resid. Dev	Pr(>Chi)
Null			107	1553.85	
Estrato	2	415.80	105	1138.06	< 2.2e-16 ***
Período	1	0.43	104	1137.62	0.50983
Maré	1	4.27	103	1133.35	0.03868 *
Estrato:período	2	30.71	101	1102.64	2.143e-07 ***
Estrato:maré	2	388.58	99	714.06	< 2.2e-16 ***
Período: maré	1	1.56	98	712.50	0.21126
Estrato:período:maré	2	76.44	96	636.06	< 2.2e-16 ***